部分时变离散系统中的稳定性判据

部分时变离散系统中的稳定性判据

1.Lyapunov稳定性理论

下面先给出Lyapunov稳定性的一些基本理论(网上资源较多这里不再过多赘述):

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

2.一类时变离散系统的稳定性

  • 定理

​ 对于离散时变系统 x ( k + 1 ) = A ( k ) x ( k ) x(k+1)=A(k)x(k) x(k+1)=A(k)x(k),若 lim ⁡ k → ∞ A ( k ) = A \lim_{k \rightarrow \infty}A(k)=A limkA(k)=A存在且 A A A的特征值 λ i \lambda_i λi满足 ∣ λ i ∣ < 1 |\lambda_i|<1 λi<1,则系统 x ( k + 1 ) = A ( k ) x ( k ) x(k+1)=A(k)x(k) x(k+1)=A(k)x(k)渐进稳定到 0 \mathbf{0} 0

  • 证明

    先引入以下引理

    ​ 若常阵 A A A特征值满足 ∣ λ i ∣ < 1 |\lambda_i|<1 λi<1,则对任意的正定矩阵 Q Q Q,都存在唯一的正定阵 P P P,满足 A T P A − P = − Q A^TPA-P=-Q ATPAP=Q

    下面开始证明:

    ​ 若 lim ⁡ k → ∞ A ( k ) = A \lim_{k \rightarrow \infty} A(k)=A limkA(k)=A,则令 A ( k ) = A + B ( k ) A(k)=A+B(k) A(k)=A+B(k),则有: lim ⁡ k → ∞ B ( k ) = 0 \lim_{k\rightarrow \infty} B(k)=0 limkB(k)=0。有引理知 ∃ 正定阵 P \exists 正定阵P 正定阵P满足 A T P A − P = − I A^TPA-P=-I ATPAP=I,其中 I I I为单位阵。

    ​ 下面构造 V ( k ) = x ( k ) T P x ( k ) V(k)=x(k)^TPx(k) V(k)=x(k)TPx(k),则 V ( k ) V(k) V(k)正定。同时有:
    V ( k + 1 ) = x ( k + 1 ) T P x ( k + 1 ) = x ( k ) T A ( k ) T P A ( k ) x ( k ) V(k+1)=x(k+1)^TPx(k+1)\\=x(k)^TA(k)^TPA(k)x(k) V(k+1)=x(k+1)TPx(k+1)=x(k)TA(k)TPA(k)x(k)
    ​ 令 Δ V ( k ) = V ( k + 1 ) − V ( k ) \Delta V(k)=V(k+1)-V(k) ΔV(k)=V(k+1)V(k),得到:
    Δ V ( k ) = V ( k + 1 ) − V ( k ) = x ( k ) T ( A ( k ) T P A ( k ) − P ) x ( k ) = x ( k ) T ( ( A + B ( k ) ) T P ( A + B ( k ) ) − P ) x ( k ) = x ( k ) T ( A T P A − P + C ( k ) ) x ( k ) = − x ( k ) T x ( k ) + x ( k ) T C ( k ) x ( k ) \Delta V(k)=V(k+1)-V(k)\\=x(k)^T(A(k)^TPA(k)-P)x(k)\\=x(k)^T((A+B(k))^TP(A+B(k))-P)x(k)\\=x(k)^T(A^TPA-P+C(k))x(k)\\=-x(k)^Tx(k)+x(k)^TC(k)x(k) ΔV(k)=V(k+1)V(k)=x(k)T(A(k)TPA(k)P)x(k)=x(k)T((A+B(k))TP(A+B(k))P)x(k)=x(k)T(ATPAP+C(k))x(k)=x(k)Tx(k)+x(k)TC(k)x(k)
    ​ 其中: C ( k ) = A T P B ( k ) + B ( k ) T P A + B ( k ) T P B ( k ) C(k)=A^TPB(k)+B(k)^TPA+B(k)^TPB(k) C(k)=ATPB(k)+B(k)TPA+B(k)TPB(k)。有:
    lim ⁡ k → ∞ C ( k ) = 0 \lim_{k\rightarrow \infty}C(k)=0 klimC(k)=0
    ​ 此时有: lim ⁡ k → ∞ x ( k ) T C ( k ) x ( k ) x ( k ) T x ( k ) = 0 \lim_{k \rightarrow \infty}\frac{x(k)^TC(k)x(k)}{x(k)^Tx(k)}=0 limkx(k)Tx(k)x(k)TC(k)x(k)=0,由极限的定义有:
    ∃ k 0 , 当 k > k 0 时有 ∣ x ( k ) T C ( k ) x ( k ) ∣ < 1 2 x ( k ) T x ( k ) \exists k_0,当k>k_0时有|x(k)^TC(k)x(k)|<\frac{1}{2}x(k)^Tx(k) k0,k>k0时有x(k)TC(k)x(k)<21x(k)Tx(k)
    ​ 因此 k > k 0 k>k_0 k>k0时有 Δ V ( k ) = − x ( k ) T x ( k ) + x ( k ) T C ( k ) x ( k ) < − 1 2 x ( k ) T x ( k ) \Delta V(k)=-x(k)^Tx(k)+x(k)^TC(k)x(k)<-\frac{1}{2}x(k)^Tx(k) ΔV(k)=x(k)Tx(k)+x(k)TC(k)x(k)<21x(k)Tx(k)

    ​ 故 Δ V ( k ) \Delta V(k) ΔV(k) k > k 0 k > k_0 k>k0时负定。

    ​ 证毕。

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值