个人简介
作者简介:全栈研发,具备端到端系统落地能力,专注大模型的压缩部署、多模态理解与 Agent 架构设计。 热爱“结构”与“秩序”,相信复杂系统背后总有简洁可控的可能。
我叫观熵。不是在控熵,就是在观测熵的流动
个人主页:观熵
个人邮箱:privatexxxx@163.com
座右铭:愿科技之光,不止照亮智能,也照亮人心!
专栏导航
观熵系列专栏导航:
AI前沿探索:从大模型进化、多模态交互、AIGC内容生成,到AI在行业中的落地应用,我们将深入剖析最前沿的AI技术,分享实用的开发经验,并探讨AI未来的发展趋势
AI开源框架实战:面向 AI 工程师的大模型框架实战指南,覆盖训练、推理、部署与评估的全链路最佳实践
计算机视觉:聚焦计算机视觉前沿技术,涵盖图像识别、目标检测、自动驾驶、医疗影像等领域的最新进展和应用案例
国产大模型部署实战:持续更新的国产开源大模型部署实战教程,覆盖从 模型选型 → 环境配置 → 本地推理 → API封装 → 高性能部署 → 多模型管理 的完整全流程
TensorFlow 全栈实战:从建模到部署:覆盖模型构建、训练优化、跨平台部署与工程交付,帮助开发者掌握从原型到上线的完整 AI 开发流程
PyTorch 全栈实战专栏: PyTorch 框架的全栈实战应用,涵盖从模型训练、优化、部署到维护的完整流程
深入理解 TensorRT:深入解析 TensorRT 的核心机制与部署实践,助力构建高性能 AI 推理系统
Megatron-LM 实战笔记:聚焦于 Megatron-LM 框架的实战应用,涵盖从预训练、微调到部署的全流程
AI Agent:系统学习并亲手构建一个完整的 AI Agent 系统,从基础理论、算法实战、框架应用,到私有部署、多端集成
DeepSeek 实战与解析:聚焦 DeepSeek 系列模型原理解析与实战应用,涵盖部署、推理、微调与多场景集成,助你高效上手国产大模型
端侧大模型:聚焦大模型在移动设备上的部署与优化,探索端侧智能的实现路径
行业大模型 · 数据全流程指南:大模型预训练数据的设计、采集、清洗与合规治理,聚焦行业场景,从需求定义到数据闭环,帮助您构建专属的智能数据基座
机器人研发全栈进阶指南:从ROS到AI智能控制:机器人系统架构、感知建图、路径规划、控制系统、AI智能决策、系统集成等核心能力模块
人工智能下的网络安全:通过实战案例和系统化方法,帮助开发者和安全工程师识别风险、构建防御机制,确保 AI 系统的稳定与安全
智能 DevOps 工厂:AI 驱动的持续交付实践:构建以 AI 为核心的智能 DevOps 平台,涵盖从 CI/CD 流水线、AIOps、MLOps 到 DevSecOps 的全流程实践。
C++学习笔记?:聚焦于现代 C++ 编程的核心概念与实践,涵盖 STL 源码剖析、内存管理、模板元编程等关键技术
AI × Quant 系统化落地实战:从数据、策略到实盘,打造全栈智能量化交易系统
构建你的 AI 智能助手:如何在 Android 中优雅集成 DeepSeek 大模型
🔄 前言
2024 年,大语言模型(LLM)在各个领域快速落地。我们已经不满足于浏览器中和 AI 聊天,越来越多开发者正在探索:能不能将强大的大模型能力直接集成进手机 App?
答案是肯定的。
今天我就从一位一线研发的视角,带你构建一个完整的 “Android + DeepSeek” 智能助手系统,用工业级标准打磨一个真正可用、可扩展、可维护的 AI 移动应用。
🏠 架构全景图:模块解耦 + 云端推理 + 端上体验
让我们先看一张整体结构图:
┌──────────────────────────────┐
│ Android App │
│ - Jetpack UI / Compose │
│ - Retrofit + LiveData │
└────────────┬────────────────┘
│ HTTP
▼
┌──────────────────────────────┐
│ FastAPI API 服务 │
│ - 接收 Prompt,转发模型 │
│ - OpenAI 格式对接适配 │
└────────────┬────────────────┘
│ 调用
▼
┌──────────────────────────────┐
│ DeepSeek 模型推理服务 │
│ - vLLM + DeepSeek-V3 + GPU │
└──────────────────────────────┘
这套方案强调三个点:
- Android 只做前端交互;
- 后端以 OpenAI API 接口风格封装模型,易于切换;
- DeepSeek 模型可选本地部署或 HuggingFace 托管。
🌐 模型服务搭建:从模型权重到 API 接口
✅ 模型部署(推荐 vLLM + DeepSeek)
pip install vllm
python -m vllm.entrypoints.openai.api_server \
--model deepseek-ai/deepseek-llm-7b-chat \
--host 0.0.0.0 --port 8000
- 支持 OpenAI ChatCompletion 接口标准
- 可并发多线程,推理效率高
- 接入 HuggingFace 权重无需修改代码
💼 API 封装(FastAPI)
from fastapi import FastAPI
from pydantic import BaseModel
import openai
openai.api_key = ""
openai.api_base = "http://localhost:8000/v1"
app = FastAPI()
class Msg(BaseModel):
prompt: str
@app.post("/chat")
def chat(msg: Msg):
result = openai.ChatCompletion.create(
model="deepseek-chat",
messages=[{"role": "user", "content": msg.prompt}]
)
return {"reply": result["choices"][0]["message"]["content"]}
你只需要把 FastAPI 部署成容器(见下文 Dockerfile),即可接收 Android 请求。
🛠 Android 客户端开发指南
工具:Android Studio + Kotlin + Retrofit2 + Jetpack Compose
Step 1:添加依赖
dependencies {
implementation 'com.squareup.retrofit2:retrofit:2.9.0'
implementation 'com.squareup.retrofit2:converter-gson:2.9.0'
implementation 'androidx.lifecycle:lifecycle-livedata-ktx:2.6.1'
implementation 'androidx.activity:activity-compose:1.7.2'
}
Step 2:定义网络模型
data class ChatRequest(val prompt: String)
data class ChatResponse(val reply: String)
Step 3:Retrofit 接口封装
interface ApiService {
@POST("chat")
fun sendPrompt(@Body req: ChatRequest): Call<ChatResponse>
}
Step 4:调用与绑定 UI
val retrofit = Retrofit.Builder()
.baseUrl("http://10.0.2.2:8080/")
.addConverterFactory(GsonConverterFactory.create())
.build()
val service = retrofit.create(ApiService::class.java)
fun askDeepSeek(prompt: String, callback: (String) -> Unit) {
val call = service.sendPrompt(ChatRequest(prompt))
call.enqueue(object : Callback<ChatResponse> {
override fun onResponse(..., response: Response<ChatResponse>) {
callback(response.body()?.reply ?: "无回复")
}
override fun onFailure(...) {
callback("请求失败")
}
})
}
🛢 Docker 化部署:FastAPI 模块打包上线
Dockerfile:
FROM python:3.10-slim
WORKDIR /app
COPY . .
RUN pip install fastapi uvicorn openai
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "8080"]
# 构建并运行
$ docker build -t deepseek-api .
$ docker run -p 8080:8080 deepseek-api
也可推送至 K8s 或阿里云容器服务,进行横向扩展部署。
✨ 高级玩法建议
- ✅ 使用 WebSocket 推送流式回复,实现“边说边回”;
- ✅ 添加本地上下文缓存(Room + Prompt Cache);
- ✅ 模型切换能力:API 保持 OpenAI 标准,可随时替换为 GPT、Qwen 等;
- ✅ 增加语音识别和 TTS 接入,构建完整语音助手;
- ✅ 搭建 RAG 系统,用于私有知识问答。
📚 总结
这篇文章我们完整搭建了一套 “Android + DeepSeek 模型服务” 的智能助手系统。
你拥有了:
- 一套标准化后端服务(OpenAI API 接口)
- 一个能问能答的 Android UI 原型
- 一个可部署、可替换、可拓展的大模型运行框架
随着 DeepSeek、Qwen、Moonshot 等国产大模型不断提升,移动端 AI 助手将成为下一个主流交互平台。
别再等了,今天就动手,把大模型装进你的 App!
🌟 如果本文对你有帮助,欢迎三连支持!
👍 点个赞,给我一些反馈动力
⭐ 收藏起来,方便之后复习查阅
🔔 关注我,后续还有更多实战内容持续更新
写系统,也写秩序;写代码,也写世界。
观熵出品,皆为实战沉淀。