多智能体系统简介:MARL、协同机制与典型结构

个人简介
在这里插入图片描述
作者简介:全栈研发,具备端到端系统落地能力,专注大模型的压缩部署、多模态理解与 Agent 架构设计。 热爱“结构”与“秩序”,相信复杂系统背后总有简洁可控的可能。
我叫观熵。不是在控熵,就是在观测熵的流动
个人主页:观熵
个人邮箱:privatexxxx@163.com
座右铭:愿科技之光,不止照亮智能,也照亮人心!

专栏导航

观熵系列专栏导航:
AI前沿探索:从大模型进化、多模态交互、AIGC内容生成,到AI在行业中的落地应用,我们将深入剖析最前沿的AI技术,分享实用的开发经验,并探讨AI未来的发展趋势

<think>好的,用户现在想了解MAPPO算法的框架图或架构说明。首先,我需要回忆一下MAPPO的基本概念。MAPPO是多智能体近端策略优化的缩写,是PPO算法在多智能体环境中的扩展。用户之前可能已经知道PPO,但需要了解其多智能体版本的结构。 根据引用内容,MAPPO采用了中心化的Critic和去中心化的Actor结构。这意味着每个智能体的Actor(策略网络)是独立更新的,而Critic(价值函数)可能共享全局信息。需要解释清楚这两部分如何协作。 用户需要框架图或架构说明,但作为文本回答,我需要用文字描述结构。可能需要分点说明各个组件,比如Actor网络、Critic网络、经验收集、策略更新机制等。时要提到PPO的裁剪机制,这是保持算法稳定的关键。 还要注意引用提供的资料,引用1提到中心化Critic和去中心化Actor,引用2强调PPO的简单修改在多智能体中的有效性。这些都需要整合到回答中,确保信息的准确性。 用户可能对具体实现细节感兴趣,比如是否每个智能体都有自己的Critic,或者是否共享。根据知识库,Critic是中心化的,可能使用全局状态信息,而每个Actor只使用局部观察。需要明确这一点。 最后,生成的相关问题需要围绕结构、实现、优化和应用,帮助用户深入理解。比如其他算法的对比,超参数设置,实验效果等。确保问题覆盖用户可能的后续疑问。</think>### MAPPO算法架构说明 MAPPO(Multi-Agent Proximal Policy Optimization)算法框架基于以下核心组件: 1. **网络结构** - **去中心化Actor**:每个智能体拥有独立的策略网络(Actor),仅基于自身观测$o_i$生成动作分布 - **中心化Critic**:共享的价值网络(Critic),输入全局状态信息$s$(包括所有智能体观测和环境的全局信息) $$V_\phi(s) = \mathbb{E}\left[\sum_{t=0}^\infty \gamma^t r_t | s_0 = s\right]$$ 2. **数据收集流程** ```mermaid graph TD A[环境初始化] --> B[智能体并行采样] B --> C{Actor网络基于局部观测oi生成动作ai} C --> D[存储轨迹数据 <s, o1..on, a1..an, r>] D --> E[批量数据缓存池] ``` 3. **策略更新机制** - 采用PPO的裁剪目标函数保证策略更新稳定性: $$L^{CLIP}(\theta) = \mathbb{E}_t\left[\min\left(\frac{\pi_\theta(a_t|o_t)}{\pi_{\theta_{old}}(a_t|o_t)}A_t, \text{clip}\left(\frac{\pi_\theta(a_t|o_t)}{\pi_{\theta_{old}}(a_t|o_t)}, 1-\epsilon, 1+\epsilon\right)A_t\right)\right]$$ - Critic网络通过最小化时序差分误差更新: $$L(\phi) = \mathbb{E}_t\left[(V_\phi(s_t) - R_t)^2\right]$$ 4. **训练流程特性** - **参数共享**:智能体可共享策略网络参数(智能体场景) - **集中式训练**:Critic在训练时可访问全局信息 - **分布式执行**:部署时每个Actor仅需局部观测即可决策[^1][^2]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

观熵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值