平面方程及拟合

平面方程及拟合

一般式

a x + b y + c z + d = 0 ax+by+cz+d=0 ax+by+cz+d=0 a , b , c a,b,c a,b,c不同时为0,

{ a = 0 时 , 平 面 与 x 轴 平 行 b = 0 时 , 平 面 与 y 轴 平 行 c = 0 时 , 平 面 与 z 轴 平 行 d = 0 时 , 平 面 过 O 点 \left\{\begin{aligned} &a=0时,平面与x轴平行\\ &b=0 时,平面与y轴平行\\ &c=0 时,平面与z轴平行\\ &d=0 时,平面过O点 \end{aligned}\right. a=0xb=0yc=0zd=0O

向量 ( a , b , c ) (a,b,c) (a,b,c)为平面的一个法向量,证明:
设平面点 P ( x 1 , y 1 , z 1 ) , Q ( x 2 , y 2 , z 2 ) P(x_1,y_1,z_1),Q(x_2,y_2,z_2) P(x1,y1,z1),Q(x2,y2,z2)属于平面,则满足 a x 1 + b y 1 + c z 1 + d = 0 ax_1+by_1+cz_1+d=0 ax1+by1+cz1+d=0 a x 2 + b y 2 + c z 2 + d = 0 ax_2+by_2+cz_2+d=0 ax2+by2+cz2+d=0
两式相减: a ( x 2 − x 1 ) + b ( y 2 − y 1 ) + c ( z 2 − z 1 ) = 0 a(x_2-x_1)+b(y_2-y_1)+c(z_2-z_1)=0 a(x2x1)+b(y2y1)+c(z2z1)=0
设向量 P Q ⃗ = ( x 2 − x 1 , y 2 − y 1 , z 2 − z 1 ) \vec{PQ} =(x_2-x_1,y_2-y_1,z_2-z_1) PQ =(x2x1,y2y1,z2z1) ,则可知 P Q ⃗ ⋅ ( a , b , c ) = 0 \vec{PQ}\cdot(a,b,c)=0 PQ (a,b,c)=0,则向量 ( a , b , c ) (a,b,c) (a,b,c) 为法向量。
证毕。

点法式

设平面 α \alpha α 的法向量 n ⃗ = ( a , b , c ) \vec{n} = (a,b,c) n =(a,b,c),平面内一定点 A ( x 0 , y 0 , z 0 ) A(x_0,y_0,z_0) A(x0,y0,z0),平面内任意一点 P ( x , y , z ) P(x,y,z) P(x,y,z),有 P A ⃗ ∗ n ⃗ = 0 \vec{PA}*\vec{n}=0 PA n =0;
故点 P P P坐标满足: a ( x − x 0 ) + b ( y − y 0 ) + c ( z − z 0 ) = 0 a(x-x_0)+b(y-y_0)+c(z-z_0)=0 a(xx0)+b(yy0)+c(zz0)=0,即平面的点法式方程。
将其展开: a x + b y + c z + d = 0 ax+by+cz+d=0 ax+by+cz+d=0,其中 d = − ( a x 0 + b y 0 + c z 0 ) d=-(ax_0+by_0+cz_0) d=(ax0+by0+cz0), 即一般式方程。

截距式

平面与xyz坐标轴相交与 A ( x 0 , 0 , 0 ) , B ( 0 , y 0 , 0 ) , C ( 0 , 0 , z 0 ) A(x_0,0,0), B(0,y_0,0),C(0,0,z_0) A(x0,0,0),B(0,y0,0),C(0,0,z0),不交于O点,设平面方程为 a x + b y + c z + d = 0 ax+by+cz+d=0 ax+by+cz+d=0
{ x 0 a + d = 0 y 0 b + d = 0 z 0 c + d = 0 \left\{\begin{aligned} x_0a + d = 0 \\ y_0b+d=0 \\ z_0c+d=0 \end{aligned}\right. x0a+d=0y0b+d=0z0c+d=0,设 d = − 1 d=-1 d=1 x x 0 + y y 0 + z z 0 = 1 \dfrac{x}{x_0}+\dfrac{y}{y_0}+\dfrac{z}{z_0}=1 x0x+y0y+z0z=1,其法向量为 n ⃗ = ( 1 x 0 , 1 y 0 , 1 z 0 ) \vec{n}=(\dfrac{1}{x_0},\dfrac{1}{y_0},\dfrac{1}{z_0}) n =(x01,y01,z01).

点到平面距离

平面外点 P ( x 0 , y 0 , z 0 ) P(x_0,y_0,z_0) P(x0,y0,z0)到平面距离为: D = ∣ a x 0 + b y 0 + c z 0 + d ∣ a 2 + b 2 + c 2 D=\dfrac{|ax_0+by_0+cz_0+d|}{\sqrt{a^2+b^2+c^2}} D=a2+b2+c2 ax0+by0+cz0+d
可知平面到坐标原点的距离为: D o = ∣ d ∣ a 2 + b 2 + c 2 D_o=\dfrac{|d|}{\sqrt{a^2+b^2+c^2}} Do=a2+b2+c2 d

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值