《视觉SLAM十四讲精品总结》10.3: 添加g2o优化位姿T

本文介绍了在视觉里程计(VO)中如何使用g2o进行位姿优化。在visual_odometry.cpp的poseEstimationPNP()函数中,通过PNP算法获取初步位姿后,利用g2o对位姿进行优化,以减小重投影误差。同时,文章提及了g2o_types.h和g2o_types.cpp的新增内容,包括EdgeProjectXYZRGBD、EdgeProjectXYZRGBDPoseOnly和EdgeProjectXYZ2UVPoseOnly三种边类型,重点讨论了EdgeProjectXYZ2UVPoseOnly在优化过程中的作用。
摘要由CSDN通过智能技术生成

0.3版本的VO就是在0.2的基础上增加了g2o优化: 
1、在visual_odometry.cpp中的poseEstimationPNP()函数中,用PNP求出T_c_r_estimated_后,增加了g2o优化,对位姿进行优化。 
2、同时增加的还有g2o相关的头文件和源文件:g2o_types.h和g2o_types.cpp

visual_odometry.cpp

    //使用BA优化估计的位姿T
	//1. 位姿6维,观测点2维
    typedef g2o::BlockSolver<g2o::BlockSolverTraits<6,2>> Block;
    Block::LinearSolverType* linearSolver = new g2o::LinearSolverDense<Block::PoseMatrixType>();
    Block* solver_ptr = new Block( linearSolver );
    g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg ( solver_ptr );
    g2o::SparseOptimizer optimizer;
    optimizer.setAlgorithm ( solver );
    //2. 顶点是相机位姿pose
    g2o::VertexSE3Expmap* pose = new g2o::VertexSE3Expmap();
    pose->setId ( 0 );
    pose->setEstimate ( g2o::SE3Quat (
        T_c_r_estimated_.rotation_matrix(), 
        T_c_
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值