基于图机器学习的微生物网络关系预测算法研究

龙亚辉预答辩公告

浏览次数:410日期:2021-03-19编辑:院研究生秘书

预答辩公告

论文题目

基于图机器学习的微生物网络关系预测算法研究

答辩人

龙亚辉

指导教师

骆嘉伟

答辩委员会

主席

王树林

学科专业

计算机科学与技术

学院

信息科学与工程学院

答辩地点

视频答辩

答辩时间

2021年3月23日 上午10:00

学位论文简介

人体微生物与人类健康息息相关,其菌落生态失衡可能导致复杂的人体疾病,因此微生物被认为是最新的治疗靶标。目前关于人体微生物网络的关系识别研究是生物信息学研究领域的研究热点之一。因此,文本围绕人体微生物,探索微生物在复杂疾病中的作用机制以及其在药物治疗过程中的功能机制,提出了多种可用于系统识别致病微生物以及其与药物相互作用关系的计算模型。取得了以下主要创新性研究成果:

  1. 提出了一种基于改进随机游走的半监督算法NTSHMDA预测微生物-疾病关联关系。通过融合网络拓扑相似性对传统随机游走算法进行了改进,改善了已有算法预测表现。

  2. 提出了一种基于图注意力网络和矩阵填充的深度学习模型GATMDA预测微生物-疾病关联关系。本文首次将图注意力网络应用于该研究领域,解决了新微生物和新疾病相关预测问题。

  3. 提出了一种基于图卷积神经网络的微生物-药物预测模型GCNMDA,为候选化合物的选择提供了有力筛选工具。该模型有效结合了图卷积网络、条件随机场以及注意力机制等多种技术设计了高效的表征学习模块。

  4. 提出了一种基于集成图注意力网络的微生物-药物预测模型EGATMDA。该模型为图注意力网络在该研究领域的首次应用,实现了对于新微生物和新药物的相关预测。

主要学术成果

  1. Yahui Long, Jiawei Luo, Yu Zhang and Yan Xia. Predicting Human Microbe-Disease Associations via Graph Attention Networks with Inductive Matrix Completion. Briefings in Bioinformatics. 2020. (SCI 1区)

  2. Yahui Long, Min Wu, Yong Liu, Jie Zheng, Chee-Keong Kwoh, Jiawei Luo and Xiaoli Li. Graph Contextualized Attention Network for Predicting Synthetic Lethality in Human Cancers. Bioinformatics. 2021. (SCI 2区)

  3. Yahui Long, Min Wu, Chee-Keong Kwoh, Jiawei Luo and Xiaoli Li. Predicting Human Microbe-Drug Associations via Graph Convolutional Network with Conditional Random Field. Bioinformatics. 36(19), 4918-4927, 2020. (SCI 2区)

  4. Yahui Long, Min Wu, Yong Liu, Chee-Keong, Kwoh, Jiawei Luo and Xiaoli Li. Ensembling graph attention networks for human microbe-drug association prediction. Bioinformatics. 36, i779-i786, 2020. (SCI 2区)

  5. Yahui Long and Jiawei Luo. Association mining to identify microbe drug interactions based on heterogeneous network embedding representation. IEEE Journal of Biomedical and Health Informatics (J-BHI). 25(01), 266-275, 2020. (SCI 2区)

  6. Yahui Long, Yu Zhang, Min Wu, Shaoliang Peng, Chee-Keong Kwoh, Jiawei Luo and Xiaoli Li. Predicting Drugs for COVID-19/SARS-CoV-2 via Heterogeneous Graph Attention Networks. Methods. 2021. (SCI 2区, 被推荐发表)

  7. Jiawei Luo and Yahui Long. NTSHMDA: Prediction of human microbe-disease association based on random walk by integrating network topological similarity. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB). 17(4), 1341-1351, 2018. (CCF B类推荐期刊,导师一作)

  8. Yahui Long and Jiawei Luo. WMGHMDA: a novel weighted meta-graph-based model for predicting human microbe-disease association on heterogeneous information network. BMC Bioinformatics. 20:541, 2019. (SCI 3区)

  9. Yu Zhang, Yahui Long, Rui Yin, Chee-Keong Kwoh. DL-CRISPR: A Deep Learning Method for Off-Target Activity Prediction in CRISPR/Cas9 With Data. IEEE Access, 2020. (SCI 2区)

  10. Yu Zhang, Yahui Long, Chee-Keong, Kwoh. Deep learning based DNA: RNA triplex forming potential prediction. BMC Bioinformatics, 2020. (SCI 3区)

随着测序技术和微生物学的发展,已经发现微生物与各种重要的人类疾病密切相关。 从人类微生物的角度来看,对人类微生物-疾病关联的日益认识为深入了解疾病机理提供了重要的见识,这对于研究发病机理,促进早期诊断和改善精密医学非常有帮助。 但是,目前在该领域的知识仍然有限,并且距离完成还很遥远。 在这里,我们基于已知的微生物-疾病关联和高斯相互作用谱内核相似性的微生物和疾病的集成提出了基于路径的人类微生物-疾病关联预测(PBHMDA)的计算模型。 实施了一种特殊的深度优先搜索算法,以遍历微生物与疾病之间的所有可能路径,以推断出最可能与疾病相关的微生物。 结果,PBHMDA在全局和局部留一法交叉验证的框架中分别具有0.9169和0.8767的AUC(ROC曲线下的面积)获得了可靠的预测性能。 基于5倍交叉验证,0.9082±0.0061的平均AUC进一步证明了所提出模型的效率。 对于肝硬化,1型糖尿病和哮喘的案例研究,之前发表的实验文献分别确认了前10名中的9、7和9种预测微生物。 我们已经公开发布了优先考虑的微生物-疾病关联,这可能有助于选择最有潜力的对,以进一步指导实验确认。 总之,PBHMDA可能有可能促进新型微生物疾病关联的发现,并有助于未来微生物参与人类疾病机制的研究工作。 PBHMDA的代码和数据可从http://www.escience.cn/system/file?fileId=85214免费获得。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wangchuang2017

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值