D* Lite —— Path Planning

版权声明:本文为博主原创博文,未经允许不得转载,若要转载,请说明出处并给出博文链接

 

        D* Lite论文的摘要说:“增量式启发式搜索方法使用启发式来集中搜索和重用来自以前搜索的信息,从而比从头解决每个搜索任务更快地找到一系列类似搜索任务的解决方案。本文将终身规划A*应用于机器人在未知地形下的导航,包括未知地形下的目标定向导航和未知地形的映射。生成的D* Lite算法易于理解和分析。它实现了与Stentz的Focussed Dynamic A*相同的行为,但在算法上有所不同。我们证明了D* Lite的性质,并通过实验证明了增量搜索和启发式搜索相结合的优点”。原文paper

       本算法是一种从目标开始搜索路径的方法,并非像A*等其他方法都是从起始点朝着目标点搜索,是反向搜索的,从下边的仿真示意图也可以清晰看到。另外,D*算法和A*算法不太一样的也有就是,并不像A*算法那样有启发式搜索,即有针对目标的搜索,而是类似Dijkstra算法一样,全局铺地搜索一般,直到搜索到起始点才罢休。

       下边的仿真是基于静态的,即环境中的障碍物是静态的,不随时间变化而变化的。是基于A*算法Dijkstra算法的仿真地图进行仿真测试的。

                                                        

                                                      

D*Lite是一种用于路径规划的增量搜索算法,它可以被应用于ROS(机器人操作系统)的动作规划模块ros-motion-planning中。 D*Lite算法的核心思想是将环境建模成一个图形,每个图形的节点代表机器人在环境中的一个离散位置,边代表机器人从一个位置移动到另一个位置的成本。该算法使用两个主要的数据结构,即一个状态图(State Graph)和一个搜索树(Search Tree),来描述机器人在环境中的当前位置和已知的目标位置之间的最佳路径。 D*Lite算法的工作流程如下: 1. 初始化状态图和搜索树,将机器人当前位置作为起始节点。 2. 根据当前的起始节点和目标位置,通过边的成本计算启发值(Heuristic Value),并估计机器人到目标位置的最佳路径。 3. 根据启发值更新搜索树,并选择一个代价最小的路径作为当前的最佳路径。 4. 根据最佳路径,移动机器人到下一个节点,并更新状态图和搜索树。 5. 重复步骤3和步骤4,直到机器人到达目标位置。 在ROS中,ros-motion-planning模块提供了D*Lite算法的实现和接口,以帮助机器人实现自动路径规划。通过使用该模块,机器人可以根据当前环境状态,通过D*Lite算法快速生成最佳路径,并实时更新路径以应对环境的变化。同时,该模块还提供了可视化工具,使用户可以直观地了解机器人的路径规划过程和结果。 总体而言,ros-motion-planning的D*Lite算法是一种强大的工具,可以帮助机器人在复杂环境中快速生成最佳路径,提高机器人的实时性和自主性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值