PCL点云配准(1)

81 篇文章 586 订阅 ¥9.90 ¥99.00
本文介绍了PCL中点云配准的实现步骤,包括两两配准的概念、特征提取、对应关系估算、变换矩阵的求解和ICP算法的应用。通过实例分析展示了如何使用ICP算法进行点云配准,并探讨了逐步匹配多幅点云的方法。
摘要由CSDN通过智能技术生成
在逆向工程,计算机视觉,文物数字化等领域中,由于点云的不完整,旋转错位,平移错位等,使得要得到的完整的点云就需要对局部点云进行配准,为了得到被测物体的完整数据模型,需要确定一个合适的坐标系,将从各个视角得到的点集合并到统一的坐标系下形成一个完整的点云,然后就可以方便进行可视化的操作,这就是点云数据的配准。点云的配准有手动配准依赖仪器的配准,和自动配准,点云的自动配准技术是通过一定的算法或者统计学规律利用计算机计算两块点云之间错位,从而达到两块点云自动配准的效果,其实质就是把不同的坐标系中测得到的数据点云进行坐标系的变换,以得到整体的数据模型,问题的关键是如何让得到坐标变换的参数R(旋转矩阵)和T(平移向量),使得两视角下测得的三维数据经坐标变换后的距离最小,,目前配准算法按照过程可以分为整体配准和局部配准,。PCL中有单独的配准模块,实现了配准相关的基础数据结构,和经典的配准算法如ICP。

PCL中实现配准算法以及相关的概念

两两配准的简介:一对点云数据集的配准问题是两两配准(pairwise registration 或 pair-wise registration).通常通过应用一个估计得到的表示平移和选装的4*4缸体变换矩阵来使得一个点云的数据集精确的与另一个点云数据集(目标数据集)进行

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云PCL公众号博客

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值