信号与系统(9)- 信号的正交分解及功率- Parseval定理

由之前的内容信号与系统(1)-信号可知道,信号的功率P可以通过以下等式计算:
P = 1 t 2 − t 1 ∫ t 1 t 2 f 2 ( t ) d t P=\frac{1}{t_2-t_1}\int_{t_1}^{t_2}f^2(t)dt P=t2t11t1t2f2(t)dt
若将信号 f ( t ) f(t) f(t)通过正交函数集表示:
f ( t ) = ∑ i = − ∞ + ∞ [ C i f i ( t ) ] f(t)=\sum_{i=-\infty}^{+\infty}[C_if_i(t)] f(t)=i=+[Cifi(t)]
则功率的计算方式为:
P = 1 t 2 − t 1 ∫ t 1 t 2 f 2 ( t ) d t = 1 t 2 − t 1 ∫ t 1 t 2 [ ∑ i = − ∞ + ∞ [ C i f i ( t ) ] ] 2 d t = 1 t 2 − t 1 ∫ t 1 t 2 ∑ n = − ∞ + ∞ [ C i f i ( t ) ] 2 d t = ∑ n = − ∞ + ∞ 1 t 2 − t 1 ∫ t 1 t 2 [ C i f i ( t ) ] 2 d t = ∑ i P i \begin{aligned} P&=\frac{1}{t_2-t_1}\int_{t_1}^{t_2}f^2(t)dt \\&=\frac{1}{t_2-t_1}\int_{t_1}^{t_2}[\sum_{i=-\infty}^{+\infty}[C_if_i(t)]]^2dt \\&=\frac{1}{t_2-t_1}\int_{t_1}^{t_2}\sum_{n=-\infty}^{+\infty}[C_if_i(t)]^2dt \\&=\sum_{n=-\infty}^{+\infty}\frac{1}{t_2-t_1}\int_{t_1}^{t_2}[C_if_i(t)]^2dt \\&=\sum_i P_i \end{aligned} P=t2t11t1t2f2(t)dt=t2t11t1t2[i=+[Cifi(t)]]2dt=t2t11t1t2n=+[Cifi(t)]2dt=n=+t2t11t1t2[Cifi(t)]2dt=iPi
其中 P i = 1 t 2 − t 1 ∫ t 1 t 2 [ C i f i ( t ) ] 2 d t P_i=\frac{1}{t_2-t_1}\int_{t_1}^{t_2}[C_if_i(t)]^2dt Pi=t2t11t1t2[Cifi(t)]2dt正交信号分量的功率

由此可以得到Parseval定理:信号的功率等于信号在完备正交函数集中分解后各个子信号功率的和

注意:信号在非正交函数集中分解后,信号的功率并不满足叠加性(如泰勒级数展开)

问题:如果使用傅里叶级数对信号进行展开,由于不可能取无穷多项级数,所以通过Parseval定理计算的功率有误差该怎么办?

记通过傅里叶级数展开的信号为 f N ( t ) f_N(t) fN(t),表示傅里叶级数展开到第N项的信号,原信号为 f ( t ) f(t) f(t),则:
f N ( t ) = a 0 2 + ∑ n = 1 + ∞ [ a n c o s ( n Ω t ) + b n s i n ( n Ω t ) ] f_N(t)= \frac{a_0}{2}+\sum_{n=1}^{+\infty}[a_ncos(n\Omega t)+b_nsin(n\Omega t)] fN(t)=2a0+n=1+[ancos(nΩt)+bnsin(nΩt)]
误差 ε N ( t ) \varepsilon_N(t) εN(t)为:
ε N ( t ) = f ( t ) − f N ( t ) = ∑ i = N + 1 ∞ [ a i c o s ( i Ω t ) + b i s i n ( i Ω t ) ] \begin{aligned} \varepsilon_N(t)&=f(t)-f_N(t) \\&=\sum_{i=N+1}^{\infty}[a_icos(i\Omega t)+b_isin(i\Omega t)] \end{aligned} εN(t)=f(t)fN(t)=i=N+1[aicos(iΩt)+bisin(iΩt)]
信号与系统(6)- 信号的频域研究思路以及正交函数集可知,信号的误差计算为方均值:
ε N ( t ) ‾ = ∫ t 1 t 2 ε N 2 ( t ) d t = ∑ i = N + 1 ∞ 1 2 ( a i 2 + b i 2 ) \begin{aligned} \overline{\varepsilon_N(t)}&=\int_{t_1}^{t_2}\varepsilon_N^2(t)dt \\&=\sum_{i=N+1}^{\infty}\frac{1}{2}(a_i^2+b_i^2) \end{aligned} εN(t)=t1t2εN2(t)dt=i=N+121(ai2+bi2)
通过有限项傅里叶级数表示的信号功率为 P N P_N PN,即:
P N = ∑ i = 0 N P i = P − ∑ i = N + 1 ∞ P i = P − ∑ i = N + 1 ∞ 1 2 ( a i 2 + b i 2 ) = P − ε N ( t ) ‾ \begin{aligned} P_N&=\sum_{i=0}^{N}P_i \\&=P-\sum_{i=N+1}^{\infty}P_i \\&=P -\sum_{i=N+1}^{\infty}\frac{1}{2}(a_i^2+b_i^2) \\&=P - \overline{\varepsilon_N(t)} \end{aligned} PN=i=0NPi=Pi=N+1Pi=Pi=N+121(ai2+bi2)=PεN(t)
P是信号没有误差的功率。

因此,通过有限项傅里叶级数展开的信号 f N ( t ) f_N(t) fN(t)和原信号 f ( t ) f(t) f(t)之间的功率误差为:
P − P N = ε N ( t ) ‾ P-P_N=\overline{\varepsilon_N(t)} PPN=εN(t)
也就是说,用有限项的傅里叶级数逼近一个信号的时候,这个信号的功率的误差就等于逼近N项的方均误差。

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值