Swin Transformer 简介
Swin Transformer 是一种基于 Transformer 架构的,专为视觉任务设计的创新模型。它由微软研究院提出,并迅速成为计算机视觉领域的热门研究方向,特别是在图像分类、目标检测和语义分割等任务上表现出色。Swin Transformer 的核心优势在于其能够有效处理图像中的层次性结构和大尺度变化,同时保持较高的计算效率。
Swin Transformer 的主要特点包括:
-
层次化Transformer结构:与传统的Transformer模型不同,Swin Transformer 引入了层次化的设计,使其能够更有效地处理不同尺寸的图像。这种结构通过逐渐减小特征图的分辨率来提取多尺度的特征,同时减少计算量。
-
滑动窗口机制:Swin Transformer 采用滑动窗口(sliding windows)来局部计算自注意力(self-attention),这样可以显著减少模型的计算复杂度。与全局自注意力相比,滑动窗口自注意力只在局部窗口内部计算,但通过窗口间的交叠和移动,可以捕捉全局信息。
-
动态窗口交叉:为了增强模型对不同区域间交互的能力,Swin Transformer 设计了一个创新的机制,允许不同窗口之间的信息交换。这通过在连续的Transformer层之间交替改变窗口的分割方式实现,从而避免了信息孤岛,并增强了模型的表示能力。
-
可伸缩性:Swin Transformer 的另一个重要特性是其良好的可伸缩性&#x