FAST-LIO(二):程序运行&代码注释


前言

论文题目:FAST-LIO: A Fast, Robust LiDAR-inertial Odometry Package by Tightly-Coupled Iterated Kalman Filter,FAST-LIO:一种基于紧耦合IKF算法的快速的,鲁棒性的激光雷达惯性里程计。这里主要记录自己阅读代码的笔记。


数据准备

相应的数据文件,我放在了百度网盘上,把数据下载下来,放在相应的目录下就可以。
数据百度网盘链接
提取码:ob9k

上面链接给出的数据中,livox avia激光雷达IMU频率为:200Hz,激光雷达的频率为10Hz,也就是一帧数据的时间。

程序运行

代码的下载,以及相应依赖库的安装参考:
安装参考
程序运行命令:

roslaunch fast_lio mapping_avia.launch

roslaunch fast_lio mapping_velodyne.launch

cd /home/nvidia/ws_fast_lio/src/FAST_LIO/data/

rosbag play YOUR_DOWNLOADED.bag

运行livox avia其中一条数据,效果如下:
在这里插入图片描述
在这里插入图片描述

代码注释

1.laserMapping.cpp

// This is an advanced implementation of the algorithm described in the
// following paper:
//   J. Zhang and S. Singh. LOAM: Lidar Odometry and Mapping in Real-time.
//     Robotics: Science and Systems Conference (RSS). Berkeley, CA, July 2014.

// Modifier: Livox               dev@livoxtech.com

// Copyright 2013, Ji Zhang, Carnegie Mellon University
// Further contributions copyright (c) 2016, Southwest Research Institute
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice,
//    this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright notice,
//    this list of conditions and the following disclaimer in the documentation
//    and/or other materials provided with the distribution.
// 3. Neither the name of the copyright holder nor the names of its
//    contributors may be used to endorse or promote products derived from this
//    software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
#include <omp.h>
#include <mutex>
#include <math.h>
#include <thread>
#include <fstream>
#include <csignal>
#include <unistd.h>
#include <Python.h>
#include <so3_math.h>
#include <ros/ros.h>
#include <Eigen/Core>
#include "IMU_Processing.hpp"
#include <nav_msgs/Odometry.h>
#include <nav_msgs/Path.h>
#include <visualization_msgs/Marker.h>
#include <pcl_conversions/pcl_conversions.h>
#include <pcl/point_cloud.h>
#include <pcl/point_types.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/io/pcd_io.h>
#include <sensor_msgs/PointCloud2.h>
#include <tf/transform_datatypes.h>
#include <tf/transform_broadcaster.h>
#include <geometry_msgs/Vector3.h>
#include <livox_ros_driver/CustomMsg.h>
#include "preprocess.h"
#include <ikd-Tree/ikd_Tree.h>

#define INIT_TIME           (0.1)
#define LASER_POINT_COV     (0.001)
#define MAXN                (720000)
#define PUBFRAME_PERIOD     (20)

// time_sync_en:IMU和雷达不是同一个时间系统时使用

/*** Time Log Variables ***/
double kdtree_incremental_time = 0.0, kdtree_search_time = 0.0, kdtree_delete_time = 0.0;
double T1[MAXN], s_plot[MAXN], s_plot2[MAXN], s_plot3[MAXN], s_plot4[MAXN], s_plot5[MAXN], s_plot6[MAXN], s_plot7[MAXN], s_plot8[MAXN], s_plot9[MAXN], s_plot10[MAXN], s_plot11[MAXN];
double match_time = 0, solve_time = 0, solve_const_H_time = 0;
int    kdtree_size_st = 0, kdtree_size_end = 0;
int add_point_size = 0; // ikdtree 新增数目
int kdtree_delete_counter = 0;
bool   runtime_pos_log = false, pcd_save_en = false, time_sync_en = false;
bool extrinsic_est_en = true; // 外参估计开关
bool path_en = true;
/**************************/

float res_last[100000] = {0.0};
float DET_RANGE = 300.0f;
const float MOV_THRESHOLD = 1.5f;

mutex mtx_buffer;
condition_variable sig_buffer;

string root_dir = ROOT_DIR;
string map_file_path, lid_topic, imu_topic;

double res_mean_last = 0.05; // 观测模型中的平均残差
double total_residual = 0.0; // 观测模型中的残差和
double last_timestamp_lidar = 0;  // 最新的雷达接收回调时间戳
double last_timestamp_imu = -1.0; // 最新的imu接收回调时间戳
double gyr_cov = 0.1, acc_cov = 0.1, b_gyr_cov = 0.0001, b_acc_cov = 0.0001;
double filter_size_corner_min = 0, filter_size_surf_min = 0, filter_size_map_min = 0, fov_deg = 0;
double cube_len = 0, HALF_FOV_COS = 0, FOV_DEG = 0, total_distance = 0, lidar_end_time = 0;
double first_lidar_time = 0.0; // 一帧雷达数据的开始时间戳
int    effct_feat_num = 0, time_log_counter = 0, scan_count = 0, publish_count = 0;
int    iterCount = 0, feats_down_size = 0, NUM_MAX_ITERATIONS = 0, laserCloudValidNum = 0, pcd_save_interval = -1, pcd_index = 0;
bool   point_selected_surf[100000] = {0}; // 有效的特征点
bool   lidar_pushed = true; // 
bool flg_first_scan = true; // 第一帧
bool flg_exit = false, flg_EKF_inited;
bool   scan_pub_en = false, dense_pub_en = false, scan_body_pub_en = false;

vector<vector<int>>  pointSearchInd_surf; 
vector<BoxPointType> cub_needrm;
vector<PointVector>  Nearest_Points; // ??
vector<double>       extrinT(3, 0.0);
vector<double>       extrinR(9, 0.0);
deque<double>                     time_buffer; // 激光雷达数据
deque<PointCloudXYZI::Ptr>        lidar_buffer; // 雷达数据队列 
deque<sensor_msgs::Imu::ConstPtr> imu_buffer;   // IMU数据队列(指针形式)

// PointCloudXYZI:点云坐标 + 信号强度形式
// Ptr:指针形式
PointCloudXYZI::Ptr featsFromMap(new PointCloudXYZI());
PointCloudXYZI::Ptr feats_undistort(new PointCloudXYZI());
PointCloudXYZI::Ptr feats_down_body(new PointCloudXYZI()); // 雷达坐标系
PointCloudXYZI::Ptr feats_down_world(new PointCloudXYZI());// 世界坐标系
PointCloudXYZI::Ptr normvec(new PointCloudXYZI(100000, 1));
PointCloudXYZI::Ptr laserCloudOri(new PointCloudXYZI(100000, 1)); // 雷达滤波后原始数据
PointCloudXYZI::Ptr corr_normvect(new PointCloudXYZI(100000, 1)); // 存放法向量
PointCloudXYZI::Ptr _featsArray;

// VoxelGrid:使用体素化网格的方法实现下采样,并保持点云的形状特征
pcl::VoxelGrid<PointType> downSizeFilterSurf;
pcl::VoxelGrid<PointType> downSizeFilterMap;

KD_TREE<PointType> ikdtree;

V3F XAxisPoint_body(LIDAR_SP_LEN, 0.0, 0.0);
V3F XAxisPoint_world(LIDAR_SP_LEN, 0.0, 0.0);
V3D euler_cur;
V3D position_last(Zero3d);
V3D Lidar_T_wrt_IMU(Zero3d); // 雷达和IMU之间的杆臂
M3D Lidar_R_wrt_IMU(Eye3d);  // 雷达和IMU之间的安装角(转换矩阵形式)

/*** EKF inputs and output ***/
MeasureGroup Measures; // 激光雷达,IMU数据
// state_ikfom:22维
// 系统噪声的维数:12
// input_ikfom:6维
esekfom::esekf<state_ikfom, 12, input_ikfom> kf;
state_ikfom state_point; // 状态向量(反馈之后)
vect3 pos_lid; // 雷达位置(导航系)

nav_msgs::Path path;
nav_msgs::Odometry odomAftMapped; // 里程计消息
geometry_msgs::Quaternion geoQuat;
geometry_msgs::PoseStamped msg_body_pose;

shared_ptr<Preprocess> p_pre(new Preprocess());
shared_ptr<ImuProcess> p_imu(new ImuProcess()); // 类指针

void SigHandle(int sig)
{
    flg_exit = true;
    ROS_WARN("catch sig %d", sig);
    sig_buffer.notify_all();
}

inline void dump_lio_state_to_log(FILE *fp)  
{
    V3D rot_ang(Log(state_point.rot.toRotationMatrix()));
    fprintf(fp, "%lf ", Measures.lidar_beg_time - first_lidar_time);
    fprintf(fp, "%lf %lf %lf ", rot_ang(0), rot_ang(1), rot_ang(2));                   // Angle
    fprintf(fp, "%lf %lf %lf ", state_point.pos(0), state_point.pos(1), state_point.pos(2)); // Pos  
    fprintf(fp, "%lf %lf %lf ", 0.0, 0.0, 0.0);                                        // omega  
    fprintf(fp, "%lf %lf %lf ", state_point.vel(0), state_point.vel(1), state_point.vel(2)); // Vel  
    fprintf(fp, "%lf %lf %lf ", 0.0, 0.0, 0.0);                                        // Acc  
    fprintf(fp, "%lf %lf %lf ", state_point.bg(0), state_point.bg(1), state_point.bg(2));    // Bias_g  
    fprintf(fp, "%lf %lf %lf ", state_point.ba(0), state_point.ba(1), state_point.ba(2));    // Bias_a  
    fprintf(fp, "%lf %lf %lf ", state_point.grav[0], state_point.grav[1], state_point.grav[2]); // Bias_a  
    fprintf(fp, "\r\n");  
    fflush(fp);
}

// 函数功能:激光雷达坐标点转到世界坐标系
void pointBodyToWorld_ikfom(PointType const * const pi, PointType * const po, state_ikfom &s)
{
    V3D p_body(pi->x, pi->y, pi->z);
    V3D p_global(s.rot * (s.offset_R_L_I*p_body + s.offset_T_L_I) + s.pos);

    po->x = p_global(0);
    po->y = p_global(1);
    po->z = p_global(2);
    po->intensity = pi->intensity;
}

// 函数功能:激光雷达坐标点转到世界坐标系
void pointBodyToWorld(PointType const * const pi, PointType * const po)
{
    V3D p_body(pi->x, pi->y, pi->z);
    V3D p_global(state_point.rot * (state_point.offset_R_L_I*p_body + state_point.offset_T_L_I) + state_point.pos);

    po->x = p_global(0);
    po->y = p_global(1);
    po->z = p_global(2);
    po->intensity = pi->intensity; // 信号强度
}

// pi:激光雷达坐标系
// 函数功能:激光雷达坐标点转到世界坐标系
// state_point.offset_R_L_I*p_body + state_point.offset_T_L_I:转到IMU坐标系
// state_point.rot:IMU坐标系到世界坐标系
template<typename T>
void pointBodyToWorld(const Matrix<T, 3, 1> &pi, Matrix<T, 3, 1> &po)
{
    V3D p_body(pi[0], pi[1], pi[2]);
    V3D p_global(state_point.rot * (state_point.offset_R_L_I*p_body + state_point.offset_T_L_I) + state_point.pos);

    po[0] = p_global(0);
    po[1] = p_global(1);
    po[2] = p_global(2);
}

// 函数功能:激光雷达坐标点转到世界坐标系
void RGBpointBodyToWorld(PointType const * const pi, PointType * const po)
{
    V3D p_body(pi->x, pi->y, pi->z);
    V3D p_global(state_point.rot * (state_point.offset_R_L_I*p_body + state_point.offset_T_L_I) + state_point.pos);

    po->x = p_global(0);
    po->y = p_global(1);
    po->z = p_global(2);
    po->intensity = pi->intensity;
}

// 函数功能:激光雷达坐标点转到IMU坐标系
void RGBpointBodyLidarToIMU(PointType const * const pi, PointType * const po)
{
    V3D p_body_lidar(pi->x, pi->y, pi->z);
    V3D p_body_imu(state_point.offset_R_L_I*p_body_lidar + state_point.offset_T_L_I);

    po->x = p_body_imu(0);
    po->y = p_body_imu(1);
    po->z = p_body_imu(2);
    po->intensity = pi->intensity;
}

void points_cache_collect()
{
    PointVector points_history;
    ikdtree.acquire_removed_points(points_history);
    // for (int i = 0; i < points_history.size(); i++) _featsArray->push_back(points_history[i]);
}

BoxPointType LocalMap_Points;
bool Localmap_Initialized = false;

void lasermap_fov_segment()
{
    cub_needrm.clear();
    kdtree_delete_counter = 0;
    kdtree_delete_time = 0.0;    
    pointBodyToWorld(XAxisPoint_body, XAxisPoint_world); // ??
    V3D pos_LiD = pos_lid;
    if (!Localmap_Initialized){
        for (int i = 0; i < 3; i++){
            // vertex:顶点
            // cube_len:200
            LocalMap_Points.vertex_min[i] = pos_LiD(i) - cube_len / 2.0;
            LocalMap_Points.vertex_max[i] = pos_LiD(i) + cube_len / 2.0;
        }
        Localmap_Initialized = true;
        return;
    }
    float dist_to_map_edge[3][2];
    bool need_move = false;
    for (int i = 0; i < 3; i++){
        dist_to_map_edge[i][0] = fabs(pos_LiD(i) - LocalMap_Points.vertex_min[i]);
        dist_to_map_edge[i][1] = fabs(pos_LiD(i) - LocalMap_Points.vertex_max[i]);
        if (dist_to_map_edge[i][0] <= MOV_THRESHOLD * DET_RANGE || dist_to_map_edge[i][1] <= MOV_THRESHOLD * DET_RANGE) need_move = true;
    }
    if (!need_move) return;
    BoxPointType New_LocalMap_Points, tmp_boxpoints;
    New_LocalMap_Points = LocalMap_Points;
    float mov_dist = max((cube_len - 2.0 * MOV_THRESHOLD * DET_RANGE) * 0.5 * 0.9, double(DET_RANGE * (MOV_THRESHOLD -1)));
    for (int i = 0; i < 3; i++){
        tmp_boxpoints = LocalMap_Points;
        if (dist_to_map_edge[i][0] <= MOV_THRESHOLD * DET_RANGE){
            New_LocalMap_Points.vertex_max[i] -= mov_dist;
            New_LocalMap_Points.vertex_min[i] -= mov_dist;
            tmp_boxpoints.vertex_min[i] = LocalMap_Points.vertex_max[i] - mov_dist;
            cub_needrm.push_back(tmp_boxpoints);
        } else if (dist_to_map_edge[i][1] <= MOV_THRESHOLD * DET_RANGE){
            New_LocalMap_Points.vertex_max[i] += mov_dist;
            New_LocalMap_Points.vertex_min[i] += mov_dist;
            tmp_boxpoints.vertex_max[i] = LocalMap_Points.vertex_min[i] + mov_dist;
            cub_needrm.push_back(tmp_boxpoints);
        }
    }
    LocalMap_Points = New_LocalMap_Points;

    points_cache_collect();
    double delete_begin = omp_get_wtime();
    if(cub_needrm.size() > 0) kdtree_delete_counter = ikdtree.Delete_Point_Boxes(cub_needrm);
    kdtree_delete_time = omp_get_wtime() - delete_begin;
}

// 标准雷达回调函数
void standard_pcl_cbk(const sensor_msgs::PointCloud2::ConstPtr &msg) 
{
    mtx_buffer.lock();
    scan_count ++;
    double preprocess_start_time = omp_get_wtime();
    if (msg->header.stamp.toSec() < last_timestamp_lidar)
    {
        ROS_ERROR("lidar loop back, clear buffer");
        lidar_buffer.clear();
    }

    PointCloudXYZI::Ptr  ptr(new PointCloudXYZI());
    p_pre->process(msg, ptr);
    lidar_buffer.push_back(ptr);
    time_buffer.push_back(msg->header.stamp.toSec());
    last_timestamp_lidar = msg->header.stamp.toSec();
    s_plot11[scan_count] = omp_get_wtime() - preprocess_start_time;
    mtx_buffer.unlock();
    sig_buffer.notify_all();
}

// 雷达和IMU之间的时间差(不是同一个时间系统)
double timediff_lidar_wrt_imu = 0.0;
bool   timediff_set_flg = false; // 是否已经计算了时间差

// livox激光雷达回调函数
void livox_pcl_cbk(const livox_ros_driver::CustomMsg::ConstPtr &msg) 
{
    mtx_buffer.lock();
    // omp_get_wtime:获得绝对时间
    double preprocess_start_time = omp_get_wtime();
    scan_count ++;
    if (msg->header.stamp.toSec() < last_timestamp_lidar)
    {
        ROS_ERROR("lidar loop back, clear buffer");
        lidar_buffer.clear();
    }
    last_timestamp_lidar = msg->header.stamp.toSec();
    
    // 不是同一个时间系统
    if (!time_sync_en && abs(last_timestamp_imu - last_timestamp_lidar) > 10.0 && !imu_buffer.empty() && !lidar_buffer.empty() )
    {
        printf("IMU and LiDAR not Synced, IMU time: %lf, lidar header time: %lf \n",last_timestamp_imu, last_timestamp_lidar);
    }
    // 如果是同一个时间系统,正常情况下不会相差大于1s(不是同一个时间系统)
    if (time_sync_en && !timediff_set_flg && abs(last_timestamp_lidar - last_timestamp_imu) > 1 && !imu_buffer.empty())
    {
        timediff_set_flg = true;
        timediff_lidar_wrt_imu = last_timestamp_lidar + 0.1 - last_timestamp_imu; // 0.1??
        printf("Self sync IMU and LiDAR, time diff is %.10lf \n", timediff_lidar_wrt_imu);
    }

    PointCloudXYZI::Ptr  ptr(new PointCloudXYZI());
    p_pre->process(msg, ptr); // 数据格式转换
    lidar_buffer.push_back(ptr);
    time_buffer.push_back(last_timestamp_lidar);
    
    s_plot11[scan_count] = omp_get_wtime() - preprocess_start_time;
    mtx_buffer.unlock();
    sig_buffer.notify_all();
}

// 接收IMU数据回调函数
// ConstPtr:智能指针
void imu_cbk(const sensor_msgs::Imu::ConstPtr &msg_in) 
{
    publish_count ++;
    // cout<<"IMU got at: "<<msg_in->header.stamp.toSec()<<endl;
    sensor_msgs::Imu::Ptr msg(new sensor_msgs::Imu(*msg_in));

    // 不是同一个时间系统,需要转换到同一个时间系统
    if (abs(timediff_lidar_wrt_imu) > 0.1 && time_sync_en)
    {
        // 重新计算时间
        msg->header.stamp = \
        ros::Time().fromSec(timediff_lidar_wrt_imu + msg_in->header.stamp.toSec());
    }

    double timestamp = msg->header.stamp.toSec();

    mtx_buffer.lock(); // 上锁

    if (timestamp < last_timestamp_imu)
    {
        ROS_WARN("imu loop back, clear buffer");
        imu_buffer.clear();
    }

    last_timestamp_imu = timestamp;

    imu_buffer.push_back(msg);
    mtx_buffer.unlock(); // 解锁
    sig_buffer.notify_all(); // ??
}

double lidar_mean_scantime = 0.0; // 雷达扫描一帧平均时间
int    scan_num = 0; // 激光雷达帧数

// 取一帧激光雷达数据,以及对应时间区间的IMU数据
// 输入数据:lidar_buffer,imu_buffer
// 输出数据:MeasureGroup
// 备注:必须同时有IMU数据,以及雷达数据
bool sync_packages(MeasureGroup &meas)
{
    if (lidar_buffer.empty() || imu_buffer.empty()) {
        return false;
    }

    /*** push a lidar scan ***/
    // 计算lidar_end_time
    if(!lidar_pushed)
    {
        meas.lidar = lidar_buffer.front();
        meas.lidar_beg_time = time_buffer.front();
        if (meas.lidar->points.size() <= 1) // time too little
        {
            lidar_end_time = meas.lidar_beg_time + lidar_mean_scantime;
            ROS_WARN("Too few input point cloud!\n");
        }
        // curvature:曲率?时间单位
        // 一帧所用的时间
        else if (meas.lidar->points.back().curvature / double(1000) < 0.5 * lidar_mean_scantime)
        {
            lidar_end_time = meas.lidar_beg_time + lidar_mean_scantime;
        }
        else
        {
            scan_num ++;
            lidar_end_time = meas.lidar_beg_time + meas.lidar->points.back().curvature / double(1000);
            // 迭代方式计算平均时间
            lidar_mean_scantime += (meas.lidar->points.back().curvature / double(1000) - lidar_mean_scantime) / scan_num;
        }

        meas.lidar_end_time = lidar_end_time;

        lidar_pushed = true;
    }
    // last_timestamp_imu:最新IMU时间戳
    // 必须有IMU数据
    if (last_timestamp_imu < lidar_end_time)
    {
        return false;
    }

    /*** push imu data, and pop from imu buffer ***/
    // 在激光雷达一帧时间区间中取IMU数据
    // 同时有IMU数据和雷达数据
    double imu_time = imu_buffer.front()->header.stamp.toSec();
    meas.imu.clear();
    while ((!imu_buffer.empty()) && (imu_time < lidar_end_time))
    {
        imu_time = imu_buffer.front()->header.stamp.toSec();
        if(imu_time > lidar_end_time) break;
        meas.imu.push_back(imu_buffer.front());
        imu_buffer.pop_front();
    }

    lidar_buffer.pop_front();
    time_buffer.pop_front();
    lidar_pushed = false;
    return true;
}

int process_increments = 0;

// 更新地图
void map_incremental()
{
    PointVector PointToAdd;// 需要在地图中新增的雷达点
    PointVector PointNoNeedDownsample; // 不需要在地图中新增的雷达点
    PointToAdd.reserve(feats_down_size);
    PointNoNeedDownsample.reserve(feats_down_size);
    for (int i = 0; i < feats_down_size; i++)
    {
        /* transform to world frame */
        // 转到导航坐标系
        pointBodyToWorld(&(feats_down_body->points[i]), &(feats_down_world->points[i]));
        /* decide if need add to map */
        // Nearest_Points??
        if (!Nearest_Points[i].empty() && flg_EKF_inited)
        {
            const PointVector &points_near = Nearest_Points[i];
            bool need_add = true;
            BoxPointType Box_of_Point;
            PointType downsample_result, mid_point; 
            // 体素滤波器长度:filter_size_map_min
            mid_point.x = floor(feats_down_world->points[i].x/filter_size_map_min)*filter_size_map_min + 0.5 * filter_size_map_min;
            mid_point.y = floor(feats_down_world->points[i].y/filter_size_map_min)*filter_size_map_min + 0.5 * filter_size_map_min;
            mid_point.z = floor(feats_down_world->points[i].z/filter_size_map_min)*filter_size_map_min + 0.5 * filter_size_map_min;
            // 二范数:dist
            float dist  = calc_dist(feats_down_world->points[i],mid_point);
            if (fabs(points_near[0].x - mid_point.x) > 0.5 * filter_size_map_min && fabs(points_near[0].y - mid_point.y) > 0.5 * filter_size_map_min && fabs(points_near[0].z - mid_point.z) > 0.5 * filter_size_map_min){
                PointNoNeedDownsample.push_back(feats_down_world->points[i]);
                continue;
            }
            for (int readd_i = 0; readd_i < NUM_MATCH_POINTS; readd_i ++)
            {
                // NUM_MATCH_POINTS:5
                if (points_near.size() < NUM_MATCH_POINTS) break;
                if (calc_dist(points_near[readd_i], mid_point) < dist)
                {
                    need_add = false;
                    break;
                }
            }
            if (need_add) PointToAdd.push_back(feats_down_world->points[i]);
        }
        else // 初始点
        {
            PointToAdd.push_back(feats_down_world->points[i]);
        }
    }

    double st_time = omp_get_wtime();
    add_point_size = ikdtree.Add_Points(PointToAdd, true);
    ikdtree.Add_Points(PointNoNeedDownsample, false); 
    add_point_size = PointToAdd.size() + PointNoNeedDownsample.size();
    kdtree_incremental_time = omp_get_wtime() - st_time;
}

PointCloudXYZI::Ptr pcl_wait_pub(new PointCloudXYZI(500000, 1));
PointCloudXYZI::Ptr pcl_wait_save(new PointCloudXYZI());
void publish_frame_world(const ros::Publisher & pubLaserCloudFull)
{
    if(scan_pub_en)
    {
        PointCloudXYZI::Ptr laserCloudFullRes(dense_pub_en ? feats_undistort : feats_down_body);
        int size = laserCloudFullRes->points.size();
        PointCloudXYZI::Ptr laserCloudWorld( \
                        new PointCloudXYZI(size, 1));

        for (int i = 0; i < size; i++)
        {
            RGBpointBodyToWorld(&laserCloudFullRes->points[i], \
                                &laserCloudWorld->points[i]);
        }

        sensor_msgs::PointCloud2 laserCloudmsg;
        pcl::toROSMsg(*laserCloudWorld, laserCloudmsg);
        laserCloudmsg.header.stamp = ros::Time().fromSec(lidar_end_time);
        laserCloudmsg.header.frame_id = "camera_init";
        pubLaserCloudFull.publish(laserCloudmsg);
        publish_count -= PUBFRAME_PERIOD;
    }

    /**************** save map ****************/
    /* 1. make sure you have enough memories
    /* 2. noted that pcd save will influence the real-time performences **/
    if (pcd_save_en)
    {
        int size = feats_undistort->points.size();
        PointCloudXYZI::Ptr laserCloudWorld( \
                        new PointCloudXYZI(size, 1));

        for (int i = 0; i < size; i++)
        {
            RGBpointBodyToWorld(&feats_undistort->points[i], \
                                &laserCloudWorld->points[i]);
        }
        *pcl_wait_save += *laserCloudWorld;

        static int scan_wait_num = 0;
        scan_wait_num ++;
        if (pcl_wait_save->size() > 0 && pcd_save_interval > 0  && scan_wait_num >= pcd_save_interval)
        {
            pcd_index ++;
            string all_points_dir(string(string(ROOT_DIR) + "PCD/scans_") + to_string(pcd_index) + string(".pcd"));
            pcl::PCDWriter pcd_writer;
            cout << "current scan saved to /PCD/" << all_points_dir << endl;
            pcd_writer.writeBinary(all_points_dir, *pcl_wait_save);
            pcl_wait_save->clear();
            scan_wait_num = 0;
        }
    }
}

void publish_frame_body(const ros::Publisher & pubLaserCloudFull_body)
{
    int size = feats_undistort->points.size();
    PointCloudXYZI::Ptr laserCloudIMUBody(new PointCloudXYZI(size, 1));

    for (int i = 0; i < size; i++)
    {
        RGBpointBodyLidarToIMU(&feats_undistort->points[i], \
                            &laserCloudIMUBody->points[i]);
    }

    sensor_msgs::PointCloud2 laserCloudmsg;
    pcl::toROSMsg(*laserCloudIMUBody, laserCloudmsg);
    laserCloudmsg.header.stamp = ros::Time().fromSec(lidar_end_time);
    laserCloudmsg.header.frame_id = "body";
    pubLaserCloudFull_body.publish(laserCloudmsg);
    publish_count -= PUBFRAME_PERIOD;
}

void publish_effect_world(const ros::Publisher & pubLaserCloudEffect)
{
    PointCloudXYZI::Ptr laserCloudWorld( \
                    new PointCloudXYZI(effct_feat_num, 1));
    for (int i = 0; i < effct_feat_num; i++)
    {
        RGBpointBodyToWorld(&laserCloudOri->points[i], \
                            &laserCloudWorld->points[i]);
    }
    sensor_msgs::PointCloud2 laserCloudFullRes3;
    pcl::toROSMsg(*laserCloudWorld, laserCloudFullRes3);
    laserCloudFullRes3.header.stamp = ros::Time().fromSec(lidar_end_time);
    laserCloudFullRes3.header.frame_id = "camera_init";
    pubLaserCloudEffect.publish(laserCloudFullRes3);
}

void publish_map(const ros::Publisher & pubLaserCloudMap)
{
    sensor_msgs::PointCloud2 laserCloudMap;
    pcl::toROSMsg(*featsFromMap, laserCloudMap);
    laserCloudMap.header.stamp = ros::Time().fromSec(lidar_end_time);
    laserCloudMap.header.frame_id = "camera_init";
    pubLaserCloudMap.publish(laserCloudMap);
}

template<typename T>
void set_posestamp(T & out)
{
    out.pose.position.x = state_point.pos(0);
    out.pose.position.y = state_point.pos(1);
    out.pose.position.z = state_point.pos(2);
    out.pose.orientation.x = geoQuat.x;
    out.pose.orientation.y = geoQuat.y;
    out.pose.orientation.z = geoQuat.z;
    out.pose.orientation.w = geoQuat.w;
    
}

// 涉及坐标转换?
void publish_odometry(const ros::Publisher & pubOdomAftMapped)
{
    odomAftMapped.header.frame_id = "camera_init";
    odomAftMapped.child_frame_id = "body";
    odomAftMapped.header.stamp = ros::Time().fromSec(lidar_end_time);// ros::Time().fromSec(lidar_end_time);
    set_posestamp(odomAftMapped.pose); // 设置位置,欧拉角
    pubOdomAftMapped.publish(odomAftMapped);
    auto P = kf.get_P(); // 协方差
    for (int i = 0; i < 6; i ++)
    {
        // 0,3
        // 1,4
        // 2,5
        // 3,0
        // 4,1
        // 5,2
        // 0-2:位置
        // 3-5:欧拉角
        int k = i < 3 ? i + 3 : i - 3;
        odomAftMapped.pose.covariance[i*6 + 0] = P(k, 3);
        odomAftMapped.pose.covariance[i*6 + 1] = P(k, 4);
        odomAftMapped.pose.covariance[i*6 + 2] = P(k, 5);
        odomAftMapped.pose.covariance[i*6 + 3] = P(k, 0);
        odomAftMapped.pose.covariance[i*6 + 4] = P(k, 1);
        odomAftMapped.pose.covariance[i*6 + 5] = P(k, 2);
    }

    static tf::TransformBroadcaster br;
    tf::Transform                   transform;
    tf::Quaternion                  q;
    transform.setOrigin(tf::Vector3(odomAftMapped.pose.pose.position.x, \
                                    odomAftMapped.pose.pose.position.y, \
                                    odomAftMapped.pose.pose.position.z));
    q.setW(odomAftMapped.pose.pose.orientation.w);
    q.setX(odomAftMapped.pose.pose.orientation.x);
    q.setY(odomAftMapped.pose.pose.orientation.y);
    q.setZ(odomAftMapped.pose.pose.orientation.z);

    transform.setRotation( q );
    br.sendTransform( tf::StampedTransform( transform, odomAftMapped.header.stamp, "camera_init", "body" ) );
}

void publish_path(const ros::Publisher pubPath)
{
    set_posestamp(msg_body_pose);
    msg_body_pose.header.stamp = ros::Time().fromSec(lidar_end_time);
    msg_body_pose.header.frame_id = "camera_init";

    /*** if path is too large, the rvis will crash ***/
    static int jjj = 0;
    jjj++;
    if (jjj % 10 == 0) 
    {
        path.poses.push_back(msg_body_pose);
        pubPath.publish(path);
    }
}

// 观测模型
void h_share_model(state_ikfom &s, esekfom::dyn_share_datastruct<double> &ekfom_data)
{
    double match_start = omp_get_wtime();
    laserCloudOri->clear(); 
    corr_normvect->clear(); 
    total_residual = 0.0; // 残差和

    // 最邻近面搜索,以及残差计算
    /** closest surface search and residual computation **/
    #ifdef MP_EN
        omp_set_num_threads(MP_PROC_NUM);
        #pragma omp parallel for
    #endif
    // feats_down_size??
    //遍历所有的特征点
    for (int i = 0; i < feats_down_size; i++)
    {
        // feats_down_body:网格滤波器之后的激光点
        PointType &point_body  = feats_down_body->points[i]; 
        // feats_down_world:世界坐标系下的激光点
        PointType &point_world = feats_down_world->points[i]; 

        /* transform to world frame */
        V3D p_body(point_body.x, point_body.y, point_body.z);
        // 激光雷达坐标系->IMU坐标系->世界坐标系
        V3D p_global(s.rot * (s.offset_R_L_I*p_body + s.offset_T_L_I) + s.pos);
        point_world.x = p_global(0);
        point_world.y = p_global(1);
        point_world.z = p_global(2);
        point_world.intensity = point_body.intensity; // 信号强度
        // NUM_MATCH_POINTS:5
        vector<float> pointSearchSqDis(NUM_MATCH_POINTS);
        auto &points_near = Nearest_Points[i];

        if (ekfom_data.converge)
        {
            /** Find the closest surfaces in the map **/
            // 在地图中找到与之最邻近的平面
            ikdtree.Nearest_Search(point_world, NUM_MATCH_POINTS, points_near, pointSearchSqDis);
            //判断是否是有效匹配点,与loam系列类似,要求特征点最近邻的地图点数量大于阈值A,距离小于阈值B
            point_selected_surf[i] = points_near.size() < NUM_MATCH_POINTS ? false : pointSearchSqDis[NUM_MATCH_POINTS - 1] > 5 ? false : true;
        }

        if (!point_selected_surf[i]) continue;

        VF(4) pabcd; //法向量
        // 参考:https://blog.csdn.net/u011483307/article/details/51034169
        point_selected_surf[i] = false;
        if (esti_plane(pabcd, points_near, 0.1f))//计算平面法向量
        {
            float pd2 = pabcd(0) * point_world.x + pabcd(1) * point_world.y + pabcd(2) * point_world.z + pabcd(3);//残差(点到平面距离)
            // 发射距离越长,测量误差越大,归一化,消除雷达点发射距离的影响
            float s = 1 - 0.9 * fabs(pd2) / sqrt(p_body.norm()); 

            if (s > 0.9)
            {
                point_selected_surf[i] = true;
                normvec->points[i].x = pabcd(0);  //法向量
                normvec->points[i].y = pabcd(1);
                normvec->points[i].z = pabcd(2);
                normvec->points[i].intensity = pd2; //残差存到intensity里
                res_last[i] = abs(pd2);
            }
        }
    }
    
    effct_feat_num = 0;

    for (int i = 0; i < feats_down_size; i++) 
    {
        if (point_selected_surf[i])//只保留有效的特征点
        {
            laserCloudOri->points[effct_feat_num] = feats_down_body->points[i];
            corr_normvect->points[effct_feat_num] = normvec->points[i];
            total_residual += res_last[i];
            effct_feat_num ++;
        }
    }

    if (effct_feat_num < 1)
    {
        ekfom_data.valid = false;
        ROS_WARN("No Effective Points! \n");
        return;
    }

    res_mean_last = total_residual / effct_feat_num;
    match_time  += omp_get_wtime() - match_start;
    double solve_start_  = omp_get_wtime();
    
    /*** Computation of Measuremnt Jacobian matrix H and measurents vector ***/
    // 计算雅可比矩阵,以及观测向量
    //h_x是观测h相对于状态x的jacobian,见fatliov1的论文公式(14)
    //h_x 为观测相对于(姿态、位置、imu和雷达间的变换)
    //的雅克比,尺寸为 特征点数x12
    ekfom_data.h_x = MatrixXd::Zero(effct_feat_num, 12); //23
    ekfom_data.h.resize(effct_feat_num);

    for (int i = 0; i < effct_feat_num; i++)
    {
        const PointType &laser_p  = laserCloudOri->points[i];
        V3D point_this_be(laser_p.x, laser_p.y, laser_p.z);
        M3D point_be_crossmat;
        point_be_crossmat << SKEW_SYM_MATRX(point_this_be);
        // 激光雷达坐标系->IMU坐标系
        V3D point_this = s.offset_R_L_I * point_this_be + s.offset_T_L_I;
        M3D point_crossmat;
        point_crossmat<<SKEW_SYM_MATRX(point_this);

        /*** get the normal vector of closest surface/corner ***/
        const PointType &norm_p = corr_normvect->points[i]; // 法向量
        V3D norm_vec(norm_p.x, norm_p.y, norm_p.z);

        /*** calculate the Measuremnt Jacobian matrix H ***/
        // conjugate:共轭,相当于矩阵求逆
        // 
        V3D C(s.rot.conjugate() *norm_vec);  // 转到IMU坐标系
        V3D A(point_crossmat * C);

        if (extrinsic_est_en)
        {
            // 先转到雷达坐标系
            // 如何推导???
            V3D B(point_be_crossmat * s.offset_R_L_I.conjugate() * C); //s.rot.conjugate()*norm_vec);
            ekfom_data.h_x.block<1, 12>(i,0) << norm_p.x, norm_p.y, norm_p.z, VEC_FROM_ARRAY(A), VEC_FROM_ARRAY(B), VEC_FROM_ARRAY(C);
        }
        else
        {
            ekfom_data.h_x.block<1, 12>(i,0) << norm_p.x, norm_p.y, norm_p.z, VEC_FROM_ARRAY(A), 0.0, 0.0, 0.0, 0.0, 0.0, 0.0;
        }

        /*** Measuremnt: distance to the closest surface/corner ***/
        // 观测量:误差形式
        ekfom_data.h(i) = -norm_p.intensity;
    }
    solve_time += omp_get_wtime() - solve_start_;
}

int main(int argc, char** argv)
{
    ros::init(argc, argv, "laserMapping");
    ros::NodeHandle nh;

    nh.param<bool>("publish/path_en",path_en, true); // ??
    nh.param<bool>("publish/scan_publish_en",scan_pub_en, true);
    nh.param<bool>("publish/dense_publish_en",dense_pub_en, true);// 高密度点云
    nh.param<bool>("publish/scan_bodyframe_pub_en",scan_body_pub_en, true);
    nh.param<int>("max_iteration",NUM_MAX_ITERATIONS,4); // IEKF最大迭代次数?
    nh.param<string>("map_file_path",map_file_path,"");
    nh.param<string>("common/lid_topic",lid_topic,"/livox/lidar");
    nh.param<string>("common/imu_topic", imu_topic,"/livox/imu");
    nh.param<bool>("common/time_sync_en", time_sync_en, false);
    nh.param<double>("filter_size_corner",filter_size_corner_min,0.5);
    nh.param<double>("filter_size_surf",filter_size_surf_min,0.5);
    nh.param<double>("filter_size_map",filter_size_map_min,0.5); // ??
    nh.param<double>("cube_side_length",cube_len,200); // 
    nh.param<float>("mapping/det_range",DET_RANGE,300.f);
    nh.param<double>("mapping/fov_degree",fov_deg,180);
    nh.param<double>("mapping/gyr_cov",gyr_cov,0.1);
    nh.param<double>("mapping/acc_cov",acc_cov,0.1);
    nh.param<double>("mapping/b_gyr_cov",b_gyr_cov,0.0001);
    nh.param<double>("mapping/b_acc_cov",b_acc_cov,0.0001);
    nh.param<double>("preprocess/blind", p_pre->blind, 0.01);
    nh.param<int>("preprocess/lidar_type", p_pre->lidar_type, AVIA); // 激光雷达类型
    nh.param<int>("preprocess/scan_line", p_pre->N_SCANS, 16); // 激光雷达线束数
    nh.param<int>("preprocess/timestamp_unit", p_pre->time_unit, US);
    nh.param<int>("preprocess/scan_rate", p_pre->SCAN_RATE, 10); // 激光雷达扫描频率?
    nh.param<int>("point_filter_num", p_pre->point_filter_num, 2);
    nh.param<bool>("feature_extract_enable", p_pre->feature_enabled, false); // 是否提取特征
    nh.param<bool>("runtime_pos_log_enable", runtime_pos_log, 0);
    nh.param<bool>("mapping/extrinsic_est_en", extrinsic_est_en, true); // 打开外参估计
    nh.param<bool>("pcd_save/pcd_save_en", pcd_save_en, false);
    nh.param<int>("pcd_save/interval", pcd_save_interval, -1);
    nh.param<vector<double>>("mapping/extrinsic_T", extrinT, vector<double>()); // IMU和激光雷达之间的杆臂
    nh.param<vector<double>>("mapping/extrinsic_R", extrinR, vector<double>()); // IMU和激光雷达之间的安装角()
    cout<<"p_pre->lidar_type "<<p_pre->lidar_type<<endl;
    
    path.header.stamp    = ros::Time::now();
    path.header.frame_id ="camera_init";

    /*** variables definition ***/
    int effect_feat_num = 0, frame_num = 0;
    double deltaT, deltaR, aver_time_consu = 0, aver_time_icp = 0, aver_time_match = 0, aver_time_incre = 0, aver_time_solve = 0, aver_time_const_H_time = 0;
    bool flg_EKF_converged, EKF_stop_flg = 0;
    
    FOV_DEG = (fov_deg + 10.0) > 179.9 ? 179.9 : (fov_deg + 10.0); // ??
    HALF_FOV_COS = cos((FOV_DEG) * 0.5 * PI_M / 180.0);

    _featsArray.reset(new PointCloudXYZI());

    memset(point_selected_surf, true, sizeof(point_selected_surf));
    memset(res_last, -1000.0f, sizeof(res_last));
    // setLeafSize:设置体素的长,宽,高
    // 这里默认是0.5米
    downSizeFilterSurf.setLeafSize(filter_size_surf_min, filter_size_surf_min, filter_size_surf_min);
    downSizeFilterMap.setLeafSize(filter_size_map_min, filter_size_map_min, filter_size_map_min);
    memset(point_selected_surf, true, sizeof(point_selected_surf));
    memset(res_last, -1000.0f, sizeof(res_last));

    //设置参数
    Lidar_T_wrt_IMU<<VEC_FROM_ARRAY(extrinT);
    Lidar_R_wrt_IMU<<MAT_FROM_ARRAY(extrinR);
    p_imu->set_extrinsic(Lidar_T_wrt_IMU, Lidar_R_wrt_IMU); // 外参(安装角,杆臂)
    p_imu->set_gyr_cov(V3D(gyr_cov, gyr_cov, gyr_cov));
    p_imu->set_acc_cov(V3D(acc_cov, acc_cov, acc_cov));
    p_imu->set_gyr_bias_cov(V3D(b_gyr_cov, b_gyr_cov, b_gyr_cov));
    p_imu->set_acc_bias_cov(V3D(b_acc_cov, b_acc_cov, b_acc_cov));

    double epsi[23] = {0.001};
    // fill:用相同的值做初始化
    fill(epsi, epsi+23, 0.001);
    // NUM_MAX_ITERATIONS = 4
    // 
    kf.init_dyn_share(get_f, df_dx, df_dw, h_share_model, NUM_MAX_ITERATIONS, epsi);

    /*** debug record ***/
    FILE *fp;
    string pos_log_dir = root_dir + "/Log/pos_log.txt";
    fp = fopen(pos_log_dir.c_str(),"w");

    ofstream fout_pre, fout_out, fout_dbg;
    fout_pre.open(DEBUG_FILE_DIR("mat_pre.txt"),ios::out);
    fout_out.open(DEBUG_FILE_DIR("mat_out.txt"),ios::out);
    fout_dbg.open(DEBUG_FILE_DIR("dbg.txt"),ios::out);
    if (fout_pre && fout_out)
        cout << "~~~~"<<ROOT_DIR<<" file opened" << endl;
    else
        cout << "~~~~"<<ROOT_DIR<<" doesn't exist" << endl;

    /*** ROS subscribe initialization ***/
    // 订阅话题
    // 话题名:lid_topic
    // 队列大小:200000
    // 回调函数:livox_pcl_cbk
    // 通过回调函数接收激光雷达数据,IMU数据
    ros::Subscriber sub_pcl = p_pre->lidar_type == AVIA ? \
        nh.subscribe(lid_topic, 200000, livox_pcl_cbk) : \
        nh.subscribe(lid_topic, 200000, standard_pcl_cbk);
    ros::Subscriber sub_imu = nh.subscribe(imu_topic, 200000, imu_cbk);
    // 发布消息类型:sensor_msgs::PointCloud2
    // 消息名:/cloud_registered
    // 消息队列大小:100000
    ros::Publisher pubLaserCloudFull = nh.advertise<sensor_msgs::PointCloud2>
            ("/cloud_registered", 100000);
    ros::Publisher pubLaserCloudFull_body = nh.advertise<sensor_msgs::PointCloud2>
            ("/cloud_registered_body", 100000);
    ros::Publisher pubLaserCloudEffect = nh.advertise<sensor_msgs::PointCloud2>
            ("/cloud_effected", 100000);
    ros::Publisher pubLaserCloudMap = nh.advertise<sensor_msgs::PointCloud2>
            ("/Laser_map", 100000);
    ros::Publisher pubOdomAftMapped = nh.advertise<nav_msgs::Odometry> 
            ("/Odometry", 100000);
    ros::Publisher pubPath          = nh.advertise<nav_msgs::Path> 
            ("/path", 100000);
//------------------------------------------------------------------------------------------------------
    // 信号捕获函数
    signal(SIGINT, SigHandle);
    // 设置循环频率:5000HZ
    ros::Rate rate(5000);
    bool status = ros::ok();
    while (status)
    {
        if (flg_exit) break;
        // 可以根据自己的需求设置接收频率,更加主动灵活
        ros::spinOnce();
        // sync_packages: 取一帧激光雷达数据,以及对应时间区间的IMU数据
        if(sync_packages(Measures)) 
        {
            // 第一帧雷达数据
            if (flg_first_scan)
            {
                first_lidar_time = Measures.lidar_beg_time;
                p_imu->first_lidar_time = first_lidar_time;
                flg_first_scan = false;
                continue;
            }

            double t0,t1,t2,t3,t4,t5,match_start, solve_start, svd_time;

            match_time = 0;
            kdtree_search_time = 0.0;
            solve_time = 0;
            solve_const_H_time = 0;
            svd_time   = 0;
            t0 = omp_get_wtime();
            // feats_undistort:运动畸变去除之后的点云数据
            // 对IMU数据进行预处理,其中包含了点云畸变处理 前向传播 反向传播
            p_imu->Process(Measures, kf, feats_undistort);
            state_point = kf.get_x();
            // state_point.pos:IMU位置
            // pos_lid:雷达位置
            pos_lid = state_point.pos + state_point.rot * state_point.offset_T_L_I; // 导航系

            if (feats_undistort->empty() || (feats_undistort == NULL))
            {
                ROS_WARN("No point, skip this scan!\n");
                continue;
            }

            flg_EKF_inited = (Measures.lidar_beg_time - first_lidar_time) < INIT_TIME ? \
                            false : true;
            /*** Segment the map in lidar FOV ***/
            lasermap_fov_segment();

            /*** downsample the feature points in a scan ***/
            downSizeFilterSurf.setInputCloud(feats_undistort);
            downSizeFilterSurf.filter(*feats_down_body);
            t1 = omp_get_wtime();
            feats_down_size = feats_down_body->points.size();
            /*** initialize the map kdtree ***/
            if(ikdtree.Root_Node == nullptr)
            {
                if(feats_down_size > 5)
                {
                    ikdtree.set_downsample_param(filter_size_map_min);
                    feats_down_world->resize(feats_down_size);
                    for(int i = 0; i < feats_down_size; i++)
                    {
                        // 转到导航系
                        pointBodyToWorld(&(feats_down_body->points[i]), &(feats_down_world->points[i]));
                    }
                    ikdtree.Build(feats_down_world->points);
                }
                continue;
            }
            int featsFromMapNum = ikdtree.validnum();
            kdtree_size_st = ikdtree.size();
            
            // cout<<"[ mapping ]: In num: "<<feats_undistort->points.size()<<" downsamp "<<feats_down_size<<" Map num: "<<featsFromMapNum<<"effect num:"<<effct_feat_num<<endl;

            /*** ICP and iterated Kalman filter update ***/
            if (feats_down_size < 5)
            {
                ROS_WARN("No point, skip this scan!\n");
                continue;
            }
            
            normvec->resize(feats_down_size);
            feats_down_world->resize(feats_down_size);

            V3D ext_euler = SO3ToEuler(state_point.offset_R_L_I);
            fout_pre<<setw(20)<<Measures.lidar_beg_time - first_lidar_time<<" "<<euler_cur.transpose()<<" "<< state_point.pos.transpose()<<" "<<ext_euler.transpose() << " "<<state_point.offset_T_L_I.transpose()<< " " << state_point.vel.transpose() \
            <<" "<<state_point.bg.transpose()<<" "<<state_point.ba.transpose()<<" "<<state_point.grav<< endl;

            if(0) // If you need to see map point, change to "if(1)"
            {
                PointVector ().swap(ikdtree.PCL_Storage);
                ikdtree.flatten(ikdtree.Root_Node, ikdtree.PCL_Storage, NOT_RECORD);
                featsFromMap->clear();
                featsFromMap->points = ikdtree.PCL_Storage;
            }

            pointSearchInd_surf.resize(feats_down_size);
            Nearest_Points.resize(feats_down_size);
            int  rematch_num = 0;
            bool nearest_search_en = true; //

            t2 = omp_get_wtime();
            
            /*** iterated state estimation ***/
            double t_update_start = omp_get_wtime();
            double solve_H_time = 0;
            // 核心函数
            // 观测方程
            kf.update_iterated_dyn_share_modified(LASER_POINT_COV, solve_H_time);
            state_point = kf.get_x();
            euler_cur = SO3ToEuler(state_point.rot);
            // pos_lid:雷达后验位置
            // 补偿IMU和雷达之间杆臂,得到雷达的导航系坐标
            pos_lid = state_point.pos + state_point.rot * state_point.offset_T_L_I;
            // 转到四元数
            geoQuat.x = state_point.rot.coeffs()[0];
            geoQuat.y = state_point.rot.coeffs()[1];
            geoQuat.z = state_point.rot.coeffs()[2];
            geoQuat.w = state_point.rot.coeffs()[3];

            double t_update_end = omp_get_wtime();

            /******* Publish odometry *******/
            publish_odometry(pubOdomAftMapped);

            /*** add the feature points to map kdtree ***/
            t3 = omp_get_wtime();
            map_incremental();
            t5 = omp_get_wtime();
            
            /******* Publish points *******/
            if (path_en)                         publish_path(pubPath);
            if (scan_pub_en || pcd_save_en)      publish_frame_world(pubLaserCloudFull);
            if (scan_pub_en && scan_body_pub_en) publish_frame_body(pubLaserCloudFull_body);
            // publish_effect_world(pubLaserCloudEffect);
            // publish_map(pubLaserCloudMap);

            /*** Debug variables ***/
            if (runtime_pos_log)
            {
                frame_num ++;
                kdtree_size_end = ikdtree.size();
                aver_time_consu = aver_time_consu * (frame_num - 1) / frame_num + (t5 - t0) / frame_num;
                aver_time_icp = aver_time_icp * (frame_num - 1)/frame_num + (t_update_end - t_update_start) / frame_num;
                aver_time_match = aver_time_match * (frame_num - 1)/frame_num + (match_time)/frame_num;
                aver_time_incre = aver_time_incre * (frame_num - 1)/frame_num + (kdtree_incremental_time)/frame_num;
                aver_time_solve = aver_time_solve * (frame_num - 1)/frame_num + (solve_time + solve_H_time)/frame_num;
                aver_time_const_H_time = aver_time_const_H_time * (frame_num - 1)/frame_num + solve_time / frame_num;
                T1[time_log_counter] = Measures.lidar_beg_time;
                s_plot[time_log_counter] = t5 - t0;
                s_plot2[time_log_counter] = feats_undistort->points.size();
                s_plot3[time_log_counter] = kdtree_incremental_time;
                s_plot4[time_log_counter] = kdtree_search_time;
                s_plot5[time_log_counter] = kdtree_delete_counter;
                s_plot6[time_log_counter] = kdtree_delete_time;
                s_plot7[time_log_counter] = kdtree_size_st;
                s_plot8[time_log_counter] = kdtree_size_end;
                s_plot9[time_log_counter] = aver_time_consu;
                s_plot10[time_log_counter] = add_point_size;
                time_log_counter ++;
                printf("[ mapping ]: time: IMU + Map + Input Downsample: %0.6f ave match: %0.6f ave solve: %0.6f  ave ICP: %0.6f  map incre: %0.6f ave total: %0.6f icp: %0.6f construct H: %0.6f \n",t1-t0,aver_time_match,aver_time_solve,t3-t1,t5-t3,aver_time_consu,aver_time_icp, aver_time_const_H_time);
                ext_euler = SO3ToEuler(state_point.offset_R_L_I);
                fout_out << setw(20) << Measures.lidar_beg_time - first_lidar_time << " " << euler_cur.transpose() << " " << state_point.pos.transpose()<< " " << ext_euler.transpose() << " "<<state_point.offset_T_L_I.transpose()<<" "<< state_point.vel.transpose() \
                <<" "<<state_point.bg.transpose()<<" "<<state_point.ba.transpose()<<" "<<state_point.grav<<" "<<feats_undistort->points.size()<<endl;
                dump_lio_state_to_log(fp);
            }
        }

        status = ros::ok();
        rate.sleep(); // 通过睡眠度过循环中剩余的时间
    }

    /**************** save map ****************/
    /* 1. make sure you have enough memories
    /* 2. pcd save will largely influence the real-time performences **/
    if (pcl_wait_save->size() > 0 && pcd_save_en)
    {
        string file_name = string("scans.pcd");
        string all_points_dir(string(string(ROOT_DIR) + "PCD/") + file_name);
        pcl::PCDWriter pcd_writer;
        cout << "current scan saved to /PCD/" << file_name<<endl;
        pcd_writer.writeBinary(all_points_dir, *pcl_wait_save);
    }

    fout_out.close();
    fout_pre.close();

    if (runtime_pos_log)
    {
        vector<double> t, s_vec, s_vec2, s_vec3, s_vec4, s_vec5, s_vec6, s_vec7;    
        FILE *fp2;
        string log_dir = root_dir + "/Log/fast_lio_time_log.csv";
        fp2 = fopen(log_dir.c_str(),"w");
        fprintf(fp2,"time_stamp, total time, scan point size, incremental time, search time, delete size, delete time, tree size st, tree size end, add point size, preprocess time\n");
        for (int i = 0;i<time_log_counter; i++){
            fprintf(fp2,"%0.8f,%0.8f,%d,%0.8f,%0.8f,%d,%0.8f,%d,%d,%d,%0.8f\n",T1[i],s_plot[i],int(s_plot2[i]),s_plot3[i],s_plot4[i],int(s_plot5[i]),s_plot6[i],int(s_plot7[i]),int(s_plot8[i]), int(s_plot10[i]), s_plot11[i]);
            t.push_back(T1[i]);
            s_vec.push_back(s_plot9[i]);
            s_vec2.push_back(s_plot3[i] + s_plot6[i]);
            s_vec3.push_back(s_plot4[i]);
            s_vec5.push_back(s_plot[i]);
        }
        fclose(fp2);
    }

    return 0;
}

2.IMU_Processing.hpp

#include <cmath>
#include <math.h>
#include <deque>
#include <mutex>
#include <thread>
#include <fstream>
#include <csignal>
#include <ros/ros.h>
#include <so3_math.h>
#include <Eigen/Eigen>
#include <common_lib.h>
#include <pcl/common/io.h>
#include <pcl/point_cloud.h>
#include <pcl/point_types.h>
#include <condition_variable>
#include <nav_msgs/Odometry.h>
#include <pcl/common/transforms.h>
#include <pcl/kdtree/kdtree_flann.h>
#include <tf/transform_broadcaster.h>
#include <eigen_conversions/eigen_msg.h>
#include <pcl_conversions/pcl_conversions.h>
#include <sensor_msgs/Imu.h>
#include <sensor_msgs/PointCloud2.h>
#include <geometry_msgs/Vector3.h>
#include "use-ikfom.hpp"

/// *************Preconfiguration

#define MAX_INI_COUNT (10)

const bool time_list(PointType &x, PointType &y) {return (x.curvature < y.curvature);};

/// *************IMU Process and undistortion
class ImuProcess
{
 public:
  EIGEN_MAKE_ALIGNED_OPERATOR_NEW

  ImuProcess();
  ~ImuProcess();
  
  void Reset();
  void Reset(double start_timestamp, const sensor_msgs::ImuConstPtr &lastimu);
  void set_extrinsic(const V3D &transl, const M3D &rot);
  void set_extrinsic(const V3D &transl);
  void set_extrinsic(const MD(4,4) &T);
  void set_gyr_cov(const V3D &scaler);
  void set_acc_cov(const V3D &scaler);
  void set_gyr_bias_cov(const V3D &b_g);
  void set_acc_bias_cov(const V3D &b_a);
  Eigen::Matrix<double, 12, 12> Q;
  void Process(const MeasureGroup &meas,  esekfom::esekf<state_ikfom, 12, input_ikfom> &kf_state, PointCloudXYZI::Ptr pcl_un_);

  ofstream fout_imu;
  V3D cov_acc; // 加速度方差 
  V3D cov_gyr; // 陀螺仪方差
  V3D cov_acc_scale;
  V3D cov_gyr_scale;
  V3D cov_bias_gyr;
  V3D cov_bias_acc;
  double first_lidar_time; //一帧雷达数据的开始时间戳 

 private:
  void IMU_init(const MeasureGroup &meas, esekfom::esekf<state_ikfom, 12, input_ikfom> &kf_state, int &N);
  void UndistortPcl(const MeasureGroup &meas, esekfom::esekf<state_ikfom, 12, input_ikfom> &kf_state, PointCloudXYZI &pcl_in_out);

  PointCloudXYZI::Ptr cur_pcl_un_; // 没有去除畸变之前的雷达数据
  sensor_msgs::ImuConstPtr last_imu_; // 一帧雷达数据对应的最后一个imu数据
  deque<sensor_msgs::ImuConstPtr> v_imu_; //IMU数据队列
  vector<Pose6D> IMUpose; // 一帧激光雷达时间区间内的imu位姿(前向预测过程)
  vector<M3D>    v_rot_pcl_;
  M3D Lidar_R_wrt_IMU; //雷达和IMU之间的安装角
  V3D Lidar_T_wrt_IMU; //雷达和IMU之间的旋转矩阵
  V3D mean_acc; // 求平均,加速度零偏
  V3D mean_gyr; // 求平均,陀螺仪零偏
  V3D angvel_last; // 去除零偏之后的角速度
  V3D acc_s_last; // 导航系坐标系的加速度
  double start_timestamp_;
  double last_lidar_end_time_; // 一帧雷达点的最后时间戳
  int    init_iter_num = 1; // 计算陀螺仪零偏需要的IMU个数
  bool   b_first_frame_ = true; // 第一帧IMU数据
  bool   imu_need_init_ = true; // imu没有完成初始化
};

ImuProcess::ImuProcess()
    : b_first_frame_(true), imu_need_init_(true), start_timestamp_(-1)
{
  init_iter_num = 1;
  Q = process_noise_cov();
  cov_acc       = V3D(0.1, 0.1, 0.1);
  cov_gyr       = V3D(0.1, 0.1, 0.1);
  cov_bias_gyr  = V3D(0.0001, 0.0001, 0.0001);
  cov_bias_acc  = V3D(0.0001, 0.0001, 0.0001);
  mean_acc      = V3D(0, 0, -1.0);
  mean_gyr      = V3D(0, 0, 0);
  angvel_last     = Zero3d;
  Lidar_T_wrt_IMU = Zero3d;
  Lidar_R_wrt_IMU = Eye3d;
  last_imu_.reset(new sensor_msgs::Imu());
}

ImuProcess::~ImuProcess() {}

void ImuProcess::Reset() 
{
  // ROS_WARN("Reset ImuProcess");
  mean_acc      = V3D(0, 0, -1.0); // 平均比力
  mean_gyr      = V3D(0, 0, 0);
  angvel_last       = Zero3d;
  imu_need_init_    = true; // 还没有初始化,需要初始化
  start_timestamp_  = -1;
  init_iter_num     = 1;
  v_imu_.clear();
  IMUpose.clear();
  last_imu_.reset(new sensor_msgs::Imu());
  cur_pcl_un_.reset(new PointCloudXYZI());
}

void ImuProcess::set_extrinsic(const MD(4,4) &T)
{
  Lidar_T_wrt_IMU = T.block<3,1>(0,3);
  Lidar_R_wrt_IMU = T.block<3,3>(0,0);
}

void ImuProcess::set_extrinsic(const V3D &transl)
{
  Lidar_T_wrt_IMU = transl;
  Lidar_R_wrt_IMU.setIdentity();
}

// 设置外参
void ImuProcess::set_extrinsic(const V3D &transl, const M3D &rot)
{
  Lidar_T_wrt_IMU = transl;
  Lidar_R_wrt_IMU = rot;
}

// 设置陀螺仪噪声
void ImuProcess::set_gyr_cov(const V3D &scaler)
{
  cov_gyr_scale = scaler;
}

// 设置加表噪声
void ImuProcess::set_acc_cov(const V3D &scaler)
{
  cov_acc_scale = scaler;
}

// 设置陀螺仪零偏
void ImuProcess::set_gyr_bias_cov(const V3D &b_g)
{
  cov_bias_gyr = b_g;
}

// 设置加表零偏
void ImuProcess::set_acc_bias_cov(const V3D &b_a)
{
  cov_bias_acc = b_a;
}

// 初始化滤波器状态变量,以及初始协方差矩阵
// IMU初始化,需要静止
// meas:激光雷达,IMU数据集合
// 计算陀螺仪零偏
void ImuProcess::IMU_init(const MeasureGroup &meas, esekfom::esekf<state_ikfom, 12, input_ikfom> &kf_state, int &N)
{
  /** 1. initializing the gravity, gyro bias, acc and gyro covariance
   ** 2. normalize the acceleration measurenments to unit gravity **/
  
  V3D cur_acc, cur_gyr;
  
  if (b_first_frame_)
  {
    Reset();
    N = 1;
    b_first_frame_ = false;
    const auto &imu_acc = meas.imu.front()->linear_acceleration; // 线加速度
    const auto &gyr_acc = meas.imu.front()->angular_velocity;    // 角速度
    mean_acc << imu_acc.x, imu_acc.y, imu_acc.z;
    mean_gyr << gyr_acc.x, gyr_acc.y, gyr_acc.z;
    first_lidar_time = meas.lidar_beg_time; // 雷达开始时间
  }

  for (const auto &imu : meas.imu)
  {
    const auto &imu_acc = imu->linear_acceleration;
    const auto &gyr_acc = imu->angular_velocity;
    cur_acc << imu_acc.x, imu_acc.y, imu_acc.z;
    cur_gyr << gyr_acc.x, gyr_acc.y, gyr_acc.z;

    // 迭代方式求平均 
    mean_acc += (cur_acc - mean_acc) / N;
    mean_gyr += (cur_gyr - mean_gyr) / N;
    // cwiseProduct??
    // 方差
    cov_acc = cov_acc * (N - 1.0) / N + (cur_acc - mean_acc).cwiseProduct(cur_acc - mean_acc) * (N - 1.0) / (N * N);
    cov_gyr = cov_gyr * (N - 1.0) / N + (cur_gyr - mean_gyr).cwiseProduct(cur_gyr - mean_gyr) * (N - 1.0) / (N * N);

    // cout<<"acc norm: "<<cur_acc.norm()<<" "<<mean_acc.norm()<<endl;

    N ++;
  }
  state_ikfom init_state = kf_state.get_x();
  // 归一化重力向量: - mean_acc / mean_acc.norm()
  // 防止加速度数据标度因子的影响:G_m_s2:9.81
  // S2?
  init_state.grav = S2(- mean_acc / mean_acc.norm() * G_m_s2); // 重力向量
  
  //state_inout.rot = Eye3d; // Exp(mean_acc.cross(V3D(0, 0, -1 / scale_gravity)));
  init_state.bg  = mean_gyr; // 陀螺零偏
  init_state.offset_T_L_I = Lidar_T_wrt_IMU;
  init_state.offset_R_L_I = Lidar_R_wrt_IMU;
  kf_state.change_x(init_state);

  // 协方差注意单位
  esekfom::esekf<state_ikfom, 12, input_ikfom>::cov init_P = kf_state.get_P();
  init_P.setIdentity();
  init_P(6,6) = init_P(7,7) = init_P(8,8) = 0.00001;     // IMU和雷达安装角
  init_P(9,9) = init_P(10,10) = init_P(11,11) = 0.00001; // IMU和雷达杆臂
  init_P(15,15) = init_P(16,16) = init_P(17,17) = 0.0001; // 陀螺仪零偏
  init_P(18,18) = init_P(19,19) = init_P(20,20) = 0.001;  // 加表零偏
  init_P(21,21) = init_P(22,22) = 0.00001;  // 重力向量
  kf_state.change_P(init_P);
  last_imu_ = meas.imu.back();

}

// 激光雷达去畸变
// 设置系统噪声
// 滤波预测过程
void ImuProcess::UndistortPcl(const MeasureGroup &meas, esekfom::esekf<state_ikfom, 12, input_ikfom> &kf_state, PointCloudXYZI &pcl_out)
{
  /*** add the imu of the last frame-tail to the of current frame-head ***/
  auto v_imu = meas.imu;
  // push_front:从队列最前面插入
  v_imu.push_front(last_imu_); 
  const double &imu_beg_time = v_imu.front()->header.stamp.toSec();
  const double &imu_end_time = v_imu.back()->header.stamp.toSec();
  const double &pcl_beg_time = meas.lidar_beg_time;
  const double &pcl_end_time = meas.lidar_end_time;
  
  /*** sort point clouds by offset time ***/
  pcl_out = *(meas.lidar);
  // 按照排序?
  sort(pcl_out.points.begin(), pcl_out.points.end(), time_list);
  // cout<<"[ IMU Process ]: Process lidar from "<<pcl_beg_time<<" to "<<pcl_end_time<<", " \
  //          <<meas.imu.size()<<" imu msgs from "<<imu_beg_time<<" to "<<imu_end_time<<endl;

  /*** Initialize IMU pose ***/
  state_ikfom imu_state = kf_state.get_x();
  IMUpose.clear();
  IMUpose.push_back(set_pose6d(0.0, acc_s_last, angvel_last, imu_state.vel, imu_state.pos, imu_state.rot.toRotationMatrix()));

    //前向过程 
  /*** forward propagation at each imu point ***/
  V3D angvel_avr, acc_avr, acc_imu, vel_imu, pos_imu;
  M3D R_imu;

  double dt = 0;

  input_ikfom in;
  for (auto it_imu = v_imu.begin(); it_imu < (v_imu.end() - 1); it_imu++)
  {
    auto &&head = *(it_imu); // &&?
    auto &&tail = *(it_imu + 1);
    
    if (tail->header.stamp.toSec() < last_lidar_end_time_)    continue;

    // 取平均值
    // 角速度平均值
    angvel_avr<<0.5 * (head->angular_velocity.x + tail->angular_velocity.x),
                0.5 * (head->angular_velocity.y + tail->angular_velocity.y),
                0.5 * (head->angular_velocity.z + tail->angular_velocity.z);
    // 加速度平均值
    acc_avr   <<0.5 * (head->linear_acceleration.x + tail->linear_acceleration.x),
                0.5 * (head->linear_acceleration.y + tail->linear_acceleration.y),
                0.5 * (head->linear_acceleration.z + tail->linear_acceleration.z);

    // fout_imu << setw(10) << head->header.stamp.toSec() - first_lidar_time << " " << angvel_avr.transpose() << " " << acc_avr.transpose() << endl;
    // 防止加速度数据标度因子的影响
    acc_avr     = acc_avr * G_m_s2 / mean_acc.norm(); // - state_inout.ba;

    if(head->header.stamp.toSec() < last_lidar_end_time_)
    {
      dt = tail->header.stamp.toSec() - last_lidar_end_time_;
      // dt = tail->header.stamp.toSec() - pcl_beg_time;
    }
    else
    {
      dt = tail->header.stamp.toSec() - head->header.stamp.toSec();
    }
    
    in.acc = acc_avr; // 加速度计平均值
    in.gyro = angvel_avr; // 陀螺仪平均值
    // 设置系统噪声
    // Q:12 * 12
    Q.block<3, 3>(0, 0).diagonal() = cov_gyr;
    Q.block<3, 3>(3, 3).diagonal() = cov_acc;
    Q.block<3, 3>(6, 6).diagonal() = cov_bias_gyr;
    Q.block<3, 3>(9, 9).diagonal() = cov_bias_acc;
    kf_state.predict(dt, Q, in); // 滤波预测过程

    /* save the poses at each IMU measurements */
    imu_state = kf_state.get_x();
    angvel_last = angvel_avr - imu_state.bg;
    acc_s_last  = imu_state.rot * (acc_avr - imu_state.ba);// 加速度转到导航系
    for(int i=0; i<3; i++)
    {
      acc_s_last[i] += imu_state.grav[i]; // 计算导航系比力
    }
    // offs_t:畸变时间
    double &&offs_t = tail->header.stamp.toSec() - pcl_beg_time;
    IMUpose.push_back(set_pose6d(offs_t, acc_s_last, angvel_last, imu_state.vel, imu_state.pos, imu_state.rot.toRotationMatrix()));
  }

  /*** calculated the pos and attitude prediction at the frame-end ***/
  double note = pcl_end_time > imu_end_time ? 1.0 : -1.0;
  dt = note * (pcl_end_time - imu_end_time); // dt > 0
  kf_state.predict(dt, Q, in);// 滤波预测过程
  
  imu_state = kf_state.get_x();
  last_imu_ = meas.imu.back();
  last_lidar_end_time_ = pcl_end_time;

  // 反向过程
  /*** undistort each lidar point (backward propagation) ***/
  if (pcl_out.points.begin() == pcl_out.points.end()) return;
  auto it_pcl = pcl_out.points.end() - 1;
  // 对于每一个imu位姿,找到一个对应的雷达位姿,该雷达时间戳比imu时间点大,并且满足最邻近,
  // 去求该雷达点时间戳所对应的位姿
  for (auto it_kp = IMUpose.end() - 1; it_kp != IMUpose.begin(); it_kp--)
  {
    auto head = it_kp - 1;
    auto tail = it_kp;
    R_imu<<MAT_FROM_ARRAY(head->rot);
    // cout<<"head imu acc: "<<acc_imu.transpose()<<endl;
    vel_imu<<VEC_FROM_ARRAY(head->vel);
    pos_imu<<VEC_FROM_ARRAY(head->pos);
    acc_imu<<VEC_FROM_ARRAY(tail->acc);
    angvel_avr<<VEC_FROM_ARRAY(tail->gyr);
    // 遍历一帧中的每一个雷达点
    // curvature:相对于一帧中第一个雷达点的时间
    // double &&offs_t = tail->header.stamp.toSec() - pcl_beg_time!!!
    // curvature = 
    // 由imu时间戳位置计算雷达时间戳位姿
    for(; it_pcl->curvature / double(1000) > head->offset_time; it_pcl --)
    {
      dt = it_pcl->curvature / double(1000) - head->offset_time; // dt > 0

      /* Transform to the 'end' frame, using only the rotation
       * Note: Compensation direction is INVERSE of Frame's moving direction
       * So if we want to compensate a point at timestamp-i to the frame-e
       * P_compensate = R_imu_e ^ T * (R_i * P_i + T_ei) where T_ei is represented in global frame */
      M3D R_i(R_imu * Exp(angvel_avr, dt)); // 最新的转换矩阵(IMU到导航坐标系)
      
      V3D P_i(it_pcl->x, it_pcl->y, it_pcl->z); // 没有去除畸变的激光雷达坐标(雷达坐标系)
      V3D T_ei(pos_imu + vel_imu * dt + 0.5 * acc_imu * dt * dt - imu_state.pos);
      // offset_T_L_I:IMU和雷达之间的杆臂
      // offset_R_L_I:IMU和雷达之间的安装角
      // imu_state.offset_R_L_I * P_i + imu_state.offset_T_L_I:转到IMU坐标系
      // (R_i * (imu_state.offset_R_L_I * P_i + imu_state.offset_T_L_I) + T_ei):
      // 
      V3D P_compensate = imu_state.offset_R_L_I.conjugate() * (imu_state.rot.conjugate() * (R_i * (imu_state.offset_R_L_I * P_i + imu_state.offset_T_L_I) + T_ei) - imu_state.offset_T_L_I);// not accurate!
      
      // save Undistorted points and their rotation
      // 去除畸变之后的激光雷达点云
      it_pcl->x = P_compensate(0);
      it_pcl->y = P_compensate(1);
      it_pcl->z = P_compensate(2);

      if (it_pcl == pcl_out.points.begin()) break;
    }
  }
}

// feats_undistort:运动畸变去除之后的点云数据
// 对IMU数据进行预处理,其中包含了点云畸变处理 前向传播 反向传播
void ImuProcess::Process(const MeasureGroup &meas,  esekfom::esekf<state_ikfom, 12, input_ikfom> &kf_state, PointCloudXYZI::Ptr cur_pcl_un_)
{
  double t1,t2,t3;
  t1 = omp_get_wtime();

  if(meas.imu.empty()) {return;};
  ROS_ASSERT(meas.lidar != nullptr);

  // 初始化,执行一次
  if (imu_need_init_)
  {
    /// The very first lidar frame
    // init_iter_num:计算陀螺仪零偏需要的IMU个数
    IMU_init(meas, kf_state, init_iter_num);
     
    imu_need_init_ = true;
    
    last_imu_   = meas.imu.back();

    state_ikfom imu_state = kf_state.get_x();
    // MAX_INI_COUNT:10
    if (init_iter_num > MAX_INI_COUNT)
    {
      // G_m_s2:广东重力加速度
      // norm:范数
      cov_acc *= pow(G_m_s2 / mean_acc.norm(), 2); // ?
      imu_need_init_ = false;
      // cov_acc覆盖??
      cov_acc = cov_acc_scale; // 设置加表噪声
      cov_gyr = cov_gyr_scale; // 设置陀螺仪噪声
      ROS_INFO("IMU Initial Done");
      // ROS_INFO("IMU Initial Done: Gravity: %.4f %.4f %.4f %.4f; state.bias_g: %.4f %.4f %.4f; acc covarience: %.8f %.8f %.8f; gry covarience: %.8f %.8f %.8f",\
      //          imu_state.grav[0], imu_state.grav[1], imu_state.grav[2], mean_acc.norm(), cov_bias_gyr[0], cov_bias_gyr[1], cov_bias_gyr[2], cov_acc[0], cov_acc[1], cov_acc[2], cov_gyr[0], cov_gyr[1], cov_gyr[2]);
      fout_imu.open(DEBUG_FILE_DIR("imu.txt"),ios::out);
    }

    return;
  }

  UndistortPcl(meas, kf_state, *cur_pcl_un_);

  t2 = omp_get_wtime();
  t3 = omp_get_wtime();
  
  // cout<<"[ IMU Process ]: Time: "<<t3 - t1<<endl;
}

3.use-ikfom.hpp

#ifndef USE_IKFOM_H
#define USE_IKFOM_H

#include <IKFoM_toolkit/esekfom/esekfom.hpp>

typedef MTK::vect<3, double> vect3;
typedef MTK::SO3<double> SO3;
typedef MTK::S2<double, 98090, 10000, 1> S2; 
typedef MTK::vect<1, double> vect1;
typedef MTK::vect<2, double> vect2;

// 状态向量(22维)
// pos:位置
// rot:欧拉角
// offset_R_L_I:IMU和激光雷达之间的安装角(旋转矩阵)
// offset_T_L_I:IMU和激光雷达之间的杆臂
// vel:速度
// bg:陀螺仪零偏
// ba:加速度计零偏
// grav:重力向量
MTK_BUILD_MANIFOLD(state_ikfom,
((vect3, pos))
((SO3, rot))
((SO3, offset_R_L_I))
((vect3, offset_T_L_I))
((vect3, vel))
((vect3, bg))
((vect3, ba))
((S2, grav))
);

// 输入数据:加速度,陀螺仪
// 增量形式?
MTK_BUILD_MANIFOLD(input_ikfom,
((vect3, acc))
((vect3, gyro))
);

// IMU噪声
MTK_BUILD_MANIFOLD(process_noise_ikfom,
((vect3, ng))
((vect3, na))
((vect3, nbg))
((vect3, nba))
);

// 设置系统噪声
MTK::get_cov<process_noise_ikfom>::type process_noise_cov()
{
	MTK::get_cov<process_noise_ikfom>::type cov = MTK::get_cov<process_noise_ikfom>::type::Zero();
	MTK::setDiagonal<process_noise_ikfom, vect3, 0>(cov, &process_noise_ikfom::ng, 0.0001);// 0.03
	MTK::setDiagonal<process_noise_ikfom, vect3, 3>(cov, &process_noise_ikfom::na, 0.0001); // *dt 0.01 0.01 * dt * dt 0.05
	MTK::setDiagonal<process_noise_ikfom, vect3, 6>(cov, &process_noise_ikfom::nbg, 0.00001); // *dt 0.00001 0.00001 * dt *dt 0.3 //0.001 0.0001 0.01
	MTK::setDiagonal<process_noise_ikfom, vect3, 9>(cov, &process_noise_ikfom::nba, 0.00001);   //0.001 0.05 0.0001/out 0.01
	return cov;
}

//double L_offset_to_I[3] = {0.04165, 0.02326, -0.0284}; // Avia 
//vect3 Lidar_offset_to_IMU(L_offset_to_I, 3);
// 函数功能:求系统微分方程(系统转换矩阵)
// 备注:没有陀螺仪随机游走,以及加速度随机游走
Eigen::Matrix<double, 24, 1> get_f(state_ikfom &s, const input_ikfom &in)
{
	Eigen::Matrix<double, 24, 1> res = Eigen::Matrix<double, 24, 1>::Zero();
	vect3 omega;
	// in.gyro:输入的陀螺仪数据
	in.gyro.boxminus(omega, s.bg); // 陀螺仪数据减去零偏
	// in.acc:输入的加速度数据
	// 加速度数据转到导航坐标系
	vect3 a_inertial = s.rot * (in.acc-s.ba); // 加速度数据减去零偏
	for(int i = 0; i < 3; i++ ){
		res(i) = s.vel[i]; // 位置微分方程(00-02:位置)
		res(i + 3) =  omega[i]; // 欧拉角微分方程(03-05:欧拉角)
		// 消除重力加速度
		res(i + 12) = a_inertial[i] + s.grav[i]; // 速度微分方程(12-15:速度)
	}
	return res;
}

// 求雅可比矩阵:系统转换矩阵的雅可比矩阵
// 参考论文《FAST-LIO: A Fast, Robust LiDAR-inertial Odometry Package by Tightly-Coupled Iterated Kalman Filter》,公式(7)
// 状态变量:
// 00-02:位置
// 03-05:欧拉角
// 06-08:IMU和激光雷达之间的安装角(旋转矩阵)
// 09-11:IMU和激光雷达之间的杆臂
// 12-15:速度
// 15-17:陀螺仪零偏
// 18-20:加速度零偏
// 21-23:重力向量
// 备注:求偏导(分子->行号,分母->列号)
Eigen::Matrix<double, 24, 23> df_dx(state_ikfom &s, const input_ikfom &in)
{
	Eigen::Matrix<double, 24, 23> cov = Eigen::Matrix<double, 24, 23>::Zero();
	cov.template block<3, 3>(0, 12) = Eigen::Matrix3d::Identity(); // 位置对速度
	vect3 acc_;
	in.acc.boxminus(acc_, s.ba); // 加速度计数据减去零偏
	vect3 omega;
	in.gyro.boxminus(omega, s.bg); // 陀螺仪数据减去零偏
	// 
	cov.template block<3, 3>(12, 3) = -s.rot.toRotationMatrix()*MTK::hat(acc_); //速度对欧拉角
	cov.template block<3, 3>(12, 18) = -s.rot.toRotationMatrix(); // 速度对加速度零偏
	Eigen::Matrix<state_ikfom::scalar, 2, 1> vec = Eigen::Matrix<state_ikfom::scalar, 2, 1>::Zero();
	Eigen::Matrix<state_ikfom::scalar, 3, 2> grav_matrix;
	// grav_matrix:0
	s.S2_Mx(grav_matrix, vec, 21);
	cov.template block<3, 2>(12, 21) =  grav_matrix; // 速度对
	// 以下公式和论文不一致 
	cov.template block<3, 3>(3, 15) = -Eigen::Matrix3d::Identity(); // 欧拉角对陀螺仪零偏??
	return cov;
}

// 求雅可比矩阵:噪声转换矩阵的雅可比矩阵
// 参考论文《FAST-LIO: A Fast, Robust LiDAR-inertial Odometry Package by Tightly-Coupled Iterated Kalman Filter》,公式(7)
// 设定固定不变的值
// 状态变量:
// 00-02:位置
// 03-05:欧拉角
// 06-08:IMU和激光雷达之间的安装角(旋转矩阵)
// 09-11:IMU和激光雷达之间的杆臂
// 12-15:速度
// 15-17:陀螺仪零偏
// 18-20:加速度零偏
// 21-23:重力向量
Eigen::Matrix<double, 24, 12> df_dw(state_ikfom &s, const input_ikfom &in)
{
	Eigen::Matrix<double, 24, 12> cov = Eigen::Matrix<double, 24, 12>::Zero();
	cov.template block<3, 3>(12, 3) = -s.rot.toRotationMatrix();  // 速度对加速度零偏的偏导
	cov.template block<3, 3>(3, 0) = -Eigen::Matrix3d::Identity(); // 欧拉角对陀螺仪零偏的偏导
	cov.template block<3, 3>(15, 6) = Eigen::Matrix3d::Identity(); // 陀螺零偏对陀螺仪随机游走噪声
	cov.template block<3, 3>(18, 9) = Eigen::Matrix3d::Identity(); // 加速度零偏对加速度计随机游走噪声
	return cov;
}

// 旋转矩阵转欧拉角:噪声转换矩阵的雅可比矩阵
vect3 SO3ToEuler(const SO3 &orient) 
{
	Eigen::Matrix<double, 3, 1> _ang;
	Eigen::Vector4d q_data = orient.coeffs().transpose();
	//scalar w=orient.coeffs[3], x=orient.coeffs[0], y=orient.coeffs[1], z=orient.coeffs[2];
	double sqw = q_data[3]*q_data[3];
	double sqx = q_data[0]*q_data[0];
	double sqy = q_data[1]*q_data[1];
	double sqz = q_data[2]*q_data[2];
	double unit = sqx + sqy + sqz + sqw; // if normalized is one, otherwise is correction factor
	double test = q_data[3]*q_data[1] - q_data[2]*q_data[0];

	if (test > 0.49999*unit) { // singularity at north pole
	
		_ang << 2 * std::atan2(q_data[0], q_data[3]), M_PI/2, 0;
		double temp[3] = {_ang[0] * 57.3, _ang[1] * 57.3, _ang[2] * 57.3};
		vect3 euler_ang(temp, 3);
		return euler_ang;
	}
	if (test < -0.49999*unit) { // singularity at south pole
		_ang << -2 * std::atan2(q_data[0], q_data[3]), -M_PI/2, 0;
		double temp[3] = {_ang[0] * 57.3, _ang[1] * 57.3, _ang[2] * 57.3};
		vect3 euler_ang(temp, 3);
		return euler_ang;
	}
		
	_ang <<
			std::atan2(2*q_data[0]*q_data[3]+2*q_data[1]*q_data[2] , -sqx - sqy + sqz + sqw),
			std::asin (2*test/unit),
			std::atan2(2*q_data[2]*q_data[3]+2*q_data[1]*q_data[0] , sqx - sqy - sqz + sqw);
	double temp[3] = {_ang[0] * 57.3, _ang[1] * 57.3, _ang[2] * 57.3};
	vect3 euler_ang(temp, 3);
		// euler_ang[0] = roll, euler_ang[1] = pitch, euler_ang[2] = yaw
	return euler_ang;
}

#endif

### 回答1: Fast-lio-localization是一种快速的激光雷达定位技术,可以在复杂的环境中实现高精度的定位。它利用激光雷达扫描周围环境,通过对激光点云数据的处理和分析,确定机器人在环境中的位置和姿态。这种技术在自动驾驶、机器人导航等领域有着广泛的应用。 ### 回答2: Fast-lio-localization是指一种高效的激光雷达定位算法。激光雷达作为机器人感知环境的重要设备,具有高精度、高稳定性等优点,广泛应用于机器人导航和定位中。快速、准确的机器人定位是机器人实现自主导航的重要前置条件之一。 Fast-lio-localization基于几种建图方法(如点云匹配技术)和滤波算法(如卡尔曼滤波)进行数据处理,以实现机器人的高精度定位。这种算法的主要优点在于它能够在较短时间内完成机器人定位,且定位的精度较高,比传统的定位算法速度快、精度高。 Fast-lio-localization算法主要包含以下几个步骤:首先,在机器人行进过程中,激光雷达会产生一堆散点云数据,接着使用建图算法将这些散点云融合成地图,用于机器人的定位;接着,使用几何滤波进行滤波处理,去除冗余噪声数据;最后,使用卡尔曼滤波处理数据,完成机器人的定位。 Fast-lio-localization算法的优势主要表现在速度和精度两个方面。首先,在定位精度方面,即使是在不良环境下,这种算法仍然可以实现高精度的定位。其次,在定位速度方面,这种算法可以应对海量数据的处理,且不需要大量的计算资源。 总体来说,Fast-lio-localization是一种高效的机器人定位算法,可以实现快速、准确的机器人定位。此外,它还可以扩展到更多其他领域,例如自动驾驶、机器人巡检等,具有广阔的应用前景。 ### 回答3: Fast-LIO-Localization是基于激光雷达的实时定位与地图构建系统。它使用现有的和准确的传感器,如激光雷达和惯性测量单元(IMU),快速地实时定位和构建场景的三维地图。系统中主要包含以下模块:激光雷达数据处理和点云匹配、IMU数据处理和运动噪声估计、位姿优化和地图构建,以及位姿跟踪和发布。Fast-LIO-Localization不需要预先应用标记或地标,并能快速响应任何类型的场景和不同的平台。 目前,Fast-LIO-Localization已被广泛应用于无人驾驶车辆、机器人和无人机等领域。在无人驾驶车辆中,Fast-LIO-Localization能够实时定位和构建实时地图,从而能够提高车辆的自主导航能力。在机器人领域,该系统能够提供精确的定位和地图构建,从而使机器人在复杂环境中进行自主操作更加稳健和准确。在无人机中,Fast-LIO-Localization能够提供实时的高精度定位数据和地图,从而能够改善无人机的飞行轨迹控制和导航计划。 总之,Fast-LIO-Localization是一种高效的定位与地图构建系统,它不仅能够广泛应用于各种智能移动设备和系统中,而且还能够提高设备和系统的性能和可靠性。它在实时性、精确性和普适性方面的优势,使得Fast-LIO-Localization成为了目前最受欢迎的激光雷达实时定位和地图构建的解决方案之一。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值