SLAM 算法框架分为传感器采集数据,前端匹配,后端非线性优化,回环检测以及建图等。对于不同的SLAM算法,对基本框架进行取舍和更改,大体结构没有变化,步骤展开如下:
1. 传感器数据采集
现代SLAM系统已突破单一传感器的局限,形成多模态感知融合体系。激光雷达(LiDAR)通过905nm/1550nm波长激光束实现毫米级测距精度,视觉传感器从单目相机发展到双目立体视觉系统,IMU(惯性测量单元)能实现200Hz以上的高频位姿估计,毫米波雷达在恶劣天气下的表现稳定,相关融合技术参考:常用的多传感器数据融合方法。
传感器标定技术是融合基础,包含:
-
时间同步:采用PTP协议实现微秒级同步
-
空间标定:基于平面靶标的LiDAR-Camera联合标定
-
内参校准:相机径向切向畸变校正
-
外参优化:基于互信息的最大似然估计
2. 前端匹配
前端匹配算法经历了从几何方法到深度学习的范式转变,实现点云配准。经典ICP算法通过SVD分解实现点云配准,但其收敛性严重依赖初始值,视觉SLAM中,ORB特征提取结合RANSAC的P