SLAM(同步定位与建图)技术的步骤解析

SLAM 算法框架分为传感器采集数据,前端匹配,后端非线性优化,回环检测以及建图等。对于不同的SLAM算法,对基本框架进行取舍和更改,大体结构没有变化,步骤展开如下:

1. 传感器数据采集

现代SLAM系统已突破单一传感器的局限,形成多模态感知融合体系。激光雷达(LiDAR)通过905nm/1550nm波长激光束实现毫米级测距精度,视觉传感器从单目相机发展到双目立体视觉系统,IMU(惯性测量单元)能实现200Hz以上的高频位姿估计,毫米波雷达在恶劣天气下的表现稳定,相关融合技术参考:常用的多传感器数据融合方法

传感器标定技术是融合基础,包含:

  • 时间同步:采用PTP协议实现微秒级同步

  • 空间标定:基于平面靶标的LiDAR-Camera联合标定

  • 内参校准:相机径向切向畸变校正

  • 外参优化:基于互信息的最大似然估计

2. 前端匹配

前端匹配算法经历了从几何方法到深度学习的范式转变,实现点云配准。经典ICP算法通过SVD分解实现点云配准,但其收敛性严重依赖初始值,视觉SLAM中,ORB特征提取结合RANSAC的P

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值