【SLAM】卡尔曼滤波(Kalman Filter)

卡尔曼滤波是一种最优信息处理器,用于线性随机微分系统的状态估计。在SLAM中,它结合系统预测和测量值,通过卡尔曼增益优化估算系统状态。算法包括预测、更新和covariance的计算,适用于存在噪声和干扰的数据。
摘要由CSDN通过智能技术生成

卡尔曼滤波(Kalman filter)一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是滤波过程。


卡尔曼滤波器的原理解释如下:
首先,我们先要引入一个离散控制过程的系统。该系统可用一个线性随机微分方程(Linear Stochastic Difference equation)来描述:
X(k)=A X(k-1)+B U(k)+W(k)
再加上系统的测量值:
Z(k)=H X(k)+V(k)
上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。A和B是系统参数,对于多模型系统,他们为矩阵。Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。W(k)和V(k)分别表示过程和测量的噪声。他们被假设成高斯白噪声(White Gaussian Noise),他们的covariance 分别是Q,R(这里我们假设他们不随系统状态变化而变化)。

对于满足上面的条件(线性随机微分系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的信息处理器。下面我们来用他们结合他们的covariances 来估算系统的最优化输出(类似上一节那个温度的例子)。

首先我们要利用系统的过程模型,来预测下一状态的系统。假设现在的系统状态是k,根据系统的模型,可以基于系统的上一状态而预测出现在状态:
X(k|k-1)=A X(k-1|k-1)+B U(k) ……….. (1)
式(1)中,X(k|k-1)是利用上一状态预测的结果,X(k-1|k-1)是上一状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0。

到现在为止,我们的系统结果已经更新了,可是,对应于X(k|k-1)的covariance还没更新。我们用P表示covariance:
P(k|k-1)=A P(k-1|k-1) A’+Q ……… (2)
推导过程:
e(k|k-1)=X(k)-X(k|k-1)=A( x(k)-x(k-1|k-1) ) + W(k)
P(k|k-1)=E{ ( X(k) - X(k|k-1) ) ( X(k) - X(k|k-1) )’}
=E{ ( AX(k-1)+BU(k)+W(k)-AX(k-1|k-1)-BU(k) ) ( AX(k-1) + BU(k) + W(k) - AX(k-1|k-1) - BU(k) )’}
=E{ ( A( X(k-1) - X(k-1|k-1) ) + W(k) ) ( A( X(k-1) - X(k-1|k-1) )+W(k) )’}
=E{ A( X(k-1) - X(k-1|k-1) ) ( X(k-1)-X(k-1|k-1) )’A’+ W(k)W(k)’}
=A E{ ( X(k-1) - X(k-1|k-1) ) ( X(k-1) - X(k-1|k-1) )’} A’+ E{ W(k)W(k)’}
=A P(k-1|k-1) A’+ Q

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值