【Matlab】求解黎卡提 Riccati 方程 李雅普诺夫 Lyapunov 方程

相关链接:【数理知识】Riccati 黎卡提 system

针对黎卡提方程
P A + A T P − P B R − 1 B T P + Q = 0 P A + A^T P - P B R^{-1} B^T P + Q = 0 PA+ATPPBR1BTP+Q=0

A = [0  0; 1  0];
B = [1; 0];
Q = [0  0; 0  1];
R = 1/4;

[P,l,g] = care(A, B, Q, R)

结果

P =

    0.5000    0.5000
    0.5000    1.0000


l =

  -1.0000 + 1.0000i
  -1.0000 - 1.0000i


g =

    2.0000    2.0000

针对李雅普诺夫方程
A T P + P A + Q = 0 A^T P + P A + Q = 0 ATP+PA+Q=0

A = [1 2; -3 -4];  
Q = [3 1; 1 1];
X = lyap(A,Q)

结果:

X =

    6.1667   -3.8333
   -3.8333    3.0000

Ref: Matlab求解黎卡提方程

Ref: Matlab求解李雅普诺夫(Lyapunov)方程

Ref: lyap-MathWorks

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Zhao-Jichao

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值