PCL 点云库学习四(双边滤波器)

双边滤波器

论文:[Bilateral Filtering for Gray and Color Images]
临近采样点加权平均,同时剔除差异大的点,数据更加平滑去除噪点

  1. 简介
  • 双边滤波是一种简单的、非迭代的边缘保持平滑方法。
  • 可以使用灰度值或者几何距离,采用值范围内的临近值
  • 可以使用颜色的3个波段(RGB)或者CIE-LAB空间下使用
  • 范围滤波:使用不同权重的的衰减来平均图像值,权重依赖于图像颜色或者光强度
  • 阈值滤波+范围滤波
  1. 思想
  • 低通滤波器如下
    c ( ξ , x ) : c(\xi,x): c(ξ,x):x与临近点 ξ \xi ξ之间的几何距离(贴近度)
    h ( x ) = k d − 1 ( x ) ∫ − ∞ ∞ ∫ − ∞ ∞ f ( ξ ) c ( ξ , x ) d ξ h(x)=k^{-1}_d(x)\int^\infty_{-\infty}\int^\infty_{-\infty}f(\xi)c(\xi,x)d\xi h(x)=kd1(x)f(ξ)c(ξ,x)dξ
    k d : k_d: kd:归一化
    k d ( x ) = ∫ − ∞ ∞ ∫ − ∞ ∞ c ( ξ , x ) d ξ k_d(x)=\int^\infty_{-\infty}\int^\infty_{-\infty}c(\xi,x)d\xi kd(x)=c(ξ,x)dξ
    如果滤波器不随位移变化,那么向量差 ξ − x \xi-x ξx k d k_d kd是常量
  • 范围滤波器
    s ( f ( ξ ) , f ( x ) ) : s(f(\xi),f(x)): s(f(ξ),f(x)):临近点中心x与临近点 ξ \xi ξ之间几何相似度
    h ( x ) = h r − 1 ( x ) ∫ − ∞ ∞ ∫ − ∞ ∞ f ( ξ ) s ( f ( ξ ) , f ( x ) ) d ξ h(x)=h_r^{-1}(x)\int^\infty_{-\infty}\int^\infty_{-\infty}f(\xi)s(f(\xi),f(x))d\xi h(x)=hr1(x)f(ξ)s(f(ξ),f(x))dξ
    k r ( x ) : k_r(x): kr(x):归一化
    k r ( x ) = ∫ − ∞ ∞ ∫ − ∞ ∞ s ( f ( ξ ) , f ( x ) ) d ξ k_r(x)=\int^\infty_{-\infty}\int^\infty_{-\infty}s(f(\xi),f(x))d\xi kr(x)=s(f(ξ),f(x))dξ
  • 组合滤波
    h ( x ) = k ( − 1 ) ( x ) ∫ − ∞ ∞ ∫ − ∞ ∞ f ( ξ ) c ( ξ , x ) s ( f ( ξ ) , f ( x ) ) d ξ h(x)=k^{(-1)(x)}\int^\infty_{-\infty}\int^\infty_{-\infty}f(\xi)c(\xi,x)s(f(\xi),f(x))d\xi h(x)=k(1)(x)f(ξ)c(ξ,x)s(f(ξ),f(x))dξ
    归一化
    k ( x ) = ∫ − ∞ ∞ ∫ − ∞ ∞ c ( ξ , x ) s ( f ( ξ ) , f ( x ) ) d ξ k(x)=\int^\infty_{-\infty}\int^\infty_{-\infty}c(\xi,x)s(f(\xi),f(x))d\xi k(x)=c(ξ,x)s(f(ξ),f(x))dξ
  • 它将x处的像素值替换为相似和邻近像素值的平均值
  • 在平滑区域,小邻域中的像素值彼此相似,归一化相似函数k, k ( − 1 ) ( x ) k^{(-1)(x)} k(1)(x)接近于1
  • 双边滤波器基本上起到标准域滤波器的作用,并且平均掉由噪声引起的像素值之间的小的、弱相关的差异
  • 在这里插入图片描述作用:见上图a,假设对于明暗区域存在明显的边界,如图a所示,b为 k ( x ) k(x) k(x)计算到的权重,最后得到c。
  1. 典型双边滤波器 高斯滤波器
  • d ( ξ , x ) = d ( ξ − x ) = ∣ ∣ ξ − x ∣ ∣ d(\xi,x)=d(\xi-x)=||\xi-x|| d(ξ,x)=d(ξx)=ξx
    c ( ξ , x ) = e x p ( − 1 2 ( d ( ξ , x ) σ d ) 2 ) c(\xi,x)=exp({-\frac{1}{2}(\frac{d(\xi,x)}{\sigma d})^2}) c(ξ,x)=exp(21(σdd(ξ,x))2)
  • δ ( ϕ , f ) = δ ( ϕ − f ) = ∣ ∣ ϕ − f ∣ ∣ \delta (\phi,f)=\delta (\phi-f)=||\phi-f|| δ(ϕ,f)=δ(ϕf)=ϕf:两个强度值之间的距离
    s ( ξ , x ) = e x p ( − 1 2 ( δ ( f ( ξ ) , f ( x ) ) σ r ) 2 ) s(\xi,x)=exp(-\frac{1}{2}(\frac{\delta(f(\xi),f(x))}{\sigma_r})^2) s(ξ,x)=exp(21(σrδ(f(ξ),f(x)))2)
  • σ d : \sigma_d: σd:该值越大,表示采用越多远方的信息,图像越模糊,如果图像放大或者缩小该值需要调整才能获得相应效果
  • σ r : \sigma_r: σr:表示实现实现组合所需的点的数量,距离小于该值的临近点将会采用,大于在计算时不采用,放大缩小时需要调整
  • 该方法为无偏估计
  1. pcl中使用(需要强度值即pcl::PointXYZI)
#include <pcl/kdtree/flann.h>
#include <pcl/io/pcd_io.h>
#include <pcl/filters/bilateral.h>

#include <pcl/kdtree/kdtree.h>
#include <pcl/filters/fast_bilateral.h>
#include <pcl/search/flann_search.h>
#include <pcl/point_cloud.h>
#include <pcl/point_types.h>
#include <pcl/filters/bilateral.h>  
using namespace std;
using namespace pcl;
int main(int argc, const char** argv) {
    pcl::PointCloud<pcl::PointXYZI>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZI>);
    pcl::io::loadPCDFile("/home/n1/notes/pcl/bilateral_filter/test2.pcd",*cloud);
    pcl::PointCloud<pcl::PointXYZI>::Ptr outcloud(new pcl::PointCloud<pcl::PointXYZI>);
    pcl::search::KdTree<pcl::PointXYZI>::Ptr tree1(new  pcl::search::KdTree<pcl::PointXYZI>);
    tree1->setInputCloud(cloud);
    pcl::BilateralFilter<pcl::PointXYZI> nf;
    //双边滤波器
    nf.setInputCloud(cloud);  //设置输入点云
    nf.setSearchMethod(tree1); //设置搜索方法
    nf.setHalfSize(1);      //高斯滤波器的一半窗口值
    nf.setStdDev(0.01);           //标准差
    nf.filter(*outcloud);

    pcl::io::savePCDFile("/home/n1/notes/pcl/bilateral_filter/output.pcd",*outcloud);
    return 0;
}

快速双边滤波器

  • 提出了一种新的双边滤波器的信号处理分析方法,对空间关系和强度进行下采样进行加速
  • 与典型双边滤波器相比,运行相同时间该方法更加准确
  • 在信号处理框架解释了双边滤波器:证明在高维空间下,双边滤波器可以表示为简单的非线性卷积
  • 证明在高维空间下,下采样对于卷积结果影响不大:这种近似技术可以在控制误差的同时使速度提高几个数量级。
  • 使用FSNR(signal-to-noise tatio) 方法快速递进求解
  1. 使用
    注:需要pcl数据为结构点云,点云类似于图像(点云宽高与位置相关),即point_cloud_ptr->height>1.
    不支持PointXYZI点云格式
#include <pcl/kdtree/flann.h>
#include <pcl/io/pcd_io.h>
#include <pcl/filters/bilateral.h>

#include <pcl/kdtree/kdtree.h>
#include <pcl/filters/fast_bilateral.h>
#include <pcl/filters/fast_bilateral_omp.h> 

#include <pcl/search/flann_search.h>
#include <pcl/point_cloud.h>
#include <pcl/point_types.h>
#include <pcl/filters/bilateral.h>  
using namespace std;
using namespace pcl;

void create_ellipse_pointcloud( pcl::PointCloud<pcl::PointXYZRGB>::Ptr& point_cloud_ptr ){
     // 以椭圆为边线沿z轴拉伸获取其点云,并赋予红绿蓝渐变色。
  uint8_t r(255), g(15), b(15);
  for (float z(-1.0); z <= 1.0; z += 0.05)
  {
    for (float angle(0.0); angle <= 360.0; angle += 5.0)
    {
      pcl::PointXYZ basic_point;
      basic_point.x = 0.5 * cosf (float(angle/180*M_PI));
      basic_point.y = sinf (float(angle/180*M_PI));
      basic_point.z = z;

      pcl::PointXYZRGB point;
      point.x = basic_point.x;
      point.y = basic_point.y;
      point.z = basic_point.z;
      uint32_t rgb = (static_cast<uint32_t>(r) << 16 |
              static_cast<uint32_t>(g) << 8 | static_cast<uint32_t>(b));
      point.rgb = *reinterpret_cast<float*>(&rgb);
      point_cloud_ptr->points.push_back (point);
    }
    if (z < 0.0)
    {
      r -= 12;
      g += 12;
    }
    else
    {
      g -= 12;
      b += 12;
    }
  }
  point_cloud_ptr->width = (int) point_cloud_ptr->points.size ()/20;
  point_cloud_ptr->height = 20;
}
int main(int argc, const char** argv) {
    pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZRGB>);
    create_ellipse_pointcloud(cloud);
    pcl::PointCloud<pcl::PointXYZRGB>::Ptr outcloud(new pcl::PointCloud<pcl::PointXYZRGB>);
    pcl::FastBilateralFilter<pcl::PointXYZRGB> fbf;
    //双边滤波器
    fbf.setInputCloud(cloud);  //设置输入点云
    //fbf.setSearchMethod(tree1);
    fbf.setSigmaS(1);      //高斯滤波器的一半窗口值
    fbf.setSigmaR(0.01);           //标准差
    fbf.applyFilter(*outcloud);

    pcl::io::savePCDFile("/home/n1/notes/pcl/fast_bilateral/output1.pcd",*outcloud);
    return 0;
}


评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值