人工神经网络组成及用例

一、简介
人工神经网络背后的概念和科学已经存在了数十年。但是直到最近几年,神经网络的承诺才变为现实,并帮助AI行业摆脱了漫长的冬季。

二、组成及其用例
组成:
人工神经网络的核心成分是人工神经元。每个神经元接收来自其他几个神经元的输入,将它们乘以分配的权重,将它们相加,然后将总和传递给一个或多个神经元。一些人工神经元可能在将输出传递给下一个变量之前将激活函数应用于输出。
在这里插入图片描述
从本质上讲,这听起来像是一个非常琐碎的数学运算。但是,当将成千上万的神经元多层放置并堆叠在一起时,你将获得一个人工神经网络,可以执行非常复杂的任务,例如对图像进行分类或识别语音。人工神经网络由一个输入层和一个输出层组成,其中输入层从外部源(数据文件,图像,硬件传感器,麦克风等)接收数据,一个或多个隐藏层处理数据,输出层提供一个或多个数据点基于网络的功能。例如,检测人,汽车和动物的神经网络将具有一个包含三个节点的输出层。对银行在安全和欺诈之间进行交易进行分类的网络将只有一个输出。
在这里插入图片描述

训练人工神经网络
人工神经网络首先为神经元之间的连接权重分配随机值。ANN正确而准确地执行其任务的关键是将这些权重调整为正确的数字。但是找到合适的权重并不是一件容易的事,特别是当您处理多层和成千上万的神经元时。
通过对带有注释示例的网络进行“培训”来完成此校准。例如,如果您要训练上述图像分类器,则可以为其提供多张照片,每张照片均标有其相应的类别(人,汽车或动物)。当您为它提供越来越多的训练示例时,神经网络会逐渐调整其权重,以将每个输入映射到正确的输出。
基本上,训练期间发生的事情是网络进行自我调整以从数据中收集特定模式。同样,对于图像分类器网络,当您使用质量示例训练AI模型时,每一层都会检测到特定的特征类别。例如,第一层可能检测到水平和垂直边缘,第二层可能检测到拐角和圆形。在网络的更深处,更深的层次将开始挑选出更高级的功能,例如面部和物体。

神经网络与经典AI
传统的基于规则的AI程序基于经典软件的原理。计算机程序旨在对存储在存储单元中的数据运行操作,并将结果保存在其他存储单元中。程序的逻辑是顺序的,确定性的,并基于明确定义的规则。操作由一个或多个中央处理器运行。
但是,神经网络既不是顺序的也不是确定性的。另外,无论底层硬件如何,都没有中央处理器来控制逻辑。相反,逻辑分布在成千上万个较小的人工神经元上。人工神经网络不运行指令;相反,他们对输入执行数学运算。开发模型行为的是他们的集体行动。
神经网络不是通过手动编码的逻辑表示知识,而是在权重和激活的总体状态下对知识进行编码。特斯拉AI负责人安德烈·卡帕蒂(Andrej Karpathy)在一篇出色的媒体文章“ 软件2.0 ” 中雄辩地描述了神经网络的软件逻辑:
我们都熟悉Software 1.0的“经典堆栈”, 它是用Python,C ++等语言编写的。它由程序员编写的对计算机的明确指令组成。通过编写每一行代码,程序员可以识别程序空间中具有某些所需行为的特定点。
人工神经网络只是执行机器学习的几种算法之一,而机器学习是人工智能的分支,它根据经验来发展行为。还有许多其他机器学习技术,它们可以在数据中找到模式并执行诸如分类和预测之类的任务。其中一些技术包括回归模型,支持向量机(SVM),k最近方法和决策树。
但是,在处理杂乱且非结构化的数据(例如图像,音频和文本)时,神经网络的性能优于其他机器学习技术。
例如,如果要使用经典的机器学习算法执行图像分类任务,则必须进行大量复杂的“功能工程”,这是一个复杂而艰巨的过程,需要数名工程师和领域专家的共同努力。神经网络和深度学习算法不需要特征工程,只要训练得当,就可以自动从图像中提取特征。但是,这并不意味着神经网络可以替代其他机器学习技术。其他类型的算法需要较少的计算资源,并且较不复杂,这使得它们在尝试解决不需要神经网络的问题时更可取。

三、总结
在本篇文章中我们简要的描述了人工神经网络的组成和其在AI等方面的一些应用,下面我们将会对其运作过程作介绍。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值