基于ROS实现多传感器时间软同步

本文介绍了自动驾驶场景中多传感器时间同步的重要性,特别是在融合不同频率的相机和激光雷达数据时。通过ROS的message_filter实现软同步方法,确保同一时刻的数据匹配。详细步骤包括代码拷贝、构建与运行,以及结果展示,帮助读者理解并应用时间同步技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Autonomous vehicle 杂谈_15


一. 写在前面:
  1. 为什么需要时间同步?有什么时间同步方法?
     需要时间同步的原因其实很简单,如果未经手动设定,我们所使用的车载传感器的频率是不一样的。比如你用的相机是15HZ,而激光雷达是20HZ,那么在做多传感器数据融合的时候,就无法实现一帧图片对应一帧点云;因此时间同步就是必须的了。而实现多传感器时间同步的方法主要有两种,一种是软同步,另一种是硬同步。(解释详见:多传感器时间同步 — 软硬详解)。
  2. 本文实现方法介绍:
     本文所使用的方法是基于ROS::message_filter的,这个方法的原理是:时间同步器会从多个源(这里指的就是LiDAR和Camera)接收到不同类型的消息,当且仅当它们有着相同的时间戳的时候,才把它们发布出去。从而实现一定程度上的多传感器时间同步。
  3. 一句总结:软同步更易实现、硬同步更加精确。
二. 代码复现
### 1. 代码拷贝
cd 
mkdir -p SensorTimeSync_ws/src
cd SensorTimeSync_ws/src
git clone https://github.com/demoxxxyf/SensorsTimeSync.git
cd SensorTimeSync 
mkdir include
cd ../../
catkin_make
# 显示 [100%] Built target data_tb 完成代码拷贝

### 2. 代码使用
source devel/setup.bash
rosrun data_tb data_tb  # 记得启动 ros master
rosbag play ***  # 播放你想要同步的bag
rosbag record -a  # 记录同步好的bag  
结果展示
rqt_bag 同步好的bag.bag

查看sync/img和sync/lidar即可
bydemo


如有问题,敬请指正。欢迎转载,但请注明出处。
### ROS多传感器数据的时间同步方法及工具 在机器人操作系统(ROS)中,为了处理来自不同传感器的数据流并确保它们能够按照时间顺序正确匹配,通常会采用`message_filters`库中的工具来进行时间同步。以下是关于如何利用这些工具实现多传感器数据的时间精确同步的具体说明。 #### TimeSynchronizer `TimeSynchronizer` 是一种严格的时间同步机制,它要求所有输入消息的时间戳完全一致才能触发回调函数[^1]。这意味着如果两个或多个传感器的消息到达时其头文件中的 `header.stamp` 值不相等,则不会调用回调函数。因此,在实际应用中,这种严格的同步方式可能难以满足需求,尤其是在存在网络延迟或其他不确定因素的情况下。 ```cpp #include <message_filters/subscriber.h> #include <message_filters/time_synchronizer.h> #include <sensor_msgs/Image.h> void callback(const sensor_msgs::ImageConstPtr& image1, const sensor_msgs::ImageConstPtr& image2){ // Process synchronized messages here. } int main(int argc, char** argv){ ros::init(argc, argv, "sync_node"); ros::NodeHandle nh; message_filters::Subscriber<sensor_msgs::Image> sub_image1(nh, "/camera1/image_raw", 1); message_filters::Subscriber<sensor_msgs::Image> sub_image2(nh, "/camera2/image_raw", 1); typedef message_filters::sync_policies::ExactTime<sensor_msgs::Image, sensor_msgs::Image> MySyncPolicy; message_filters::Synchronizer<MySyncPolicy> sync(MySyncPolicy(10), sub_image1, sub_image2); sync.registerCallback(boost::bind(&callback, _1, _2)); ros::spin(); } ``` #### ApproximateTime 相比之下,`ApproximateTime` 提供了一种更为灵活的方式,允许一定范围内的近似时间差值[^2]。通过设置队列大小以及容忍度参数,开发者可以根据具体应用场景调整精度与性能之间的平衡点。这种方法特别适合于那些无法保证绝对时间一致性但又希望尽可能减少滞后影响的情况。 ```cpp typedef message_filters::sync_policies::ApproximateTime<sensor_msgs::Image, sensor_msgs::LaserScan> MyApproxSyncPolicy; message_filters::Synchronizer<MyApproxSyncPolicy> approx_sync(MyApproxSyncPolicy(10), sub_image, sub_laserscan); approx_sync.registerCallback(boost::bind(&my_callback_function, _1, _2)); ``` 除了上述两种主要基于软件层面的方法外,还可以考虑结合硬件手段来改善整体系统的同步效果,比如使用相同的时钟源驱动各个设备或是借助外部触发信号完成动作协调等工作。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值