基础-图论基础-用于多弹协同制导问题

本文探讨了多弹协同制导中的通信问题,涉及无向与有向通信拓扑的区别,以及切换通信中的确定性和随机Markov转换。重点介绍了图的概念、描述,特别是如何用图论工具刻画智能体间的交互关系,以及邻接矩阵在不同图型中的应用。
摘要由CSDN通过智能技术生成

 多弹协同制导理论中的通信问题主要有:无向通信拓扑VS有向通信拓扑、固定通信拓扑VS切换通信拓扑。在切换通信拓扑问题中,又分为确定性切换通信拓扑和不确定性切换通信拓扑,后者可以理解成多模态切换通信拓扑,各模态之间的转换服从随机Markov转移链,参考《 i t o ^ it \hat{o} ito^ M a r k o v Markov Markov跳变系统》。

图论基础

1. 图的概念和描述

定义1: 图(graph)是指有序三元组 ( V , E , ψ ) (V,E,\psi) (V,E,ψ),其中, V V V 为非空顶点集,称为顶点集(vertex-set),其中的元素被称为图的顶点(vertex); E E E 是和顶点集 V V V不相交的边的集合,称为边集(edge-set),其中的元素被称为图 G G G的边(edge); ψ \psi ψ E E E V V V中元素有序对或无序对簇 V × V V \times V V×V的函数,称为接合函数(incidence function),或者是关联函数。 ψ \psi ψ刻画了边与定点之间的关联关系,若 V × V V \times V V×V中元素全是有序对,则 ( V , E , ψ ) (V,E,\psi) (V,E,ψ)称为有向图(digraph),记为 D = ( V ( D ) , E ( D ) , ψ D ) D = (V(D),E(D),\psi_D) D=(V(D),E(D),ψD);若 V × V V \times V V×V中元素全是无序对,则 ( V , E , ψ ) (V,E,\psi) (V,E,ψ)称为无向图(undirected graph 或 graph),记为 G = ( V ( G ) , E ( G ) , ψ G ) G = (V(G),E(G),\psi_G) G=(V(G),E(G),ψG)

定义2: 在图 G = ( V ( G ) , E ( G ) , ψ G ) G = (V(G),E(G),\psi_G) G=(V(G),E(G),ψG)中,定点 v v v的度被定义为与之相连的边的个数。在多智能体系统中,个体间的关系可用图 G = ( v , ϵ , A ) G = (v, \epsilon, A) G=(v,ϵ,A)来表示,非空节点的集 v = { 1 , 2 , 3 , . . . , n } v = \{ 1,2,3,...,n \} v={1,2,3,...,n},其节点数被称为阶,边的集合 ϵ ⊂ v × v = { ( i , j ) : i , j ∈ v \epsilon \subset v \times v = \{ (i,j):i,j \in v ϵv×v={(i,j):i,jv。加权邻接矩阵可用 A = [ a i j ] ∈ R n × n ( i , j = 1 , 2 , . . . , n ) A = [a_{ij}] \in \mathbb{R} ^{n \times n} \quad (i,j = 1,2,...,n) A=[aij]Rn×n(i,j=1,2,...,n) a i j a_{ij} aij是以 i i i为起点, j j j为终点的边的权值。无向图的邻接矩阵是对称的,即 ( i , j ) ∈ ϵ ⇔ ( j , i ) ∈ ϵ (i,j) \in \epsilon \Leftrightarrow (j,i) \in \epsilon (i,j)ϵ(j,i)ϵ a i j = a j i > 0 a_{ij} = a_{ji} > 0 aij=aji>0。有向图的邻接矩阵一般是不对称的,节点 i i i的所有邻居可以用集合 N i = { j ∈ v : ( i , j ) ∈ ϵ , j ≠ i } N_i = \{j \in v: (i,j) \in \epsilon, j \ne i \} Ni={jv:(i,j)ϵ,j=i}来表示。

2. 图的矩阵描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Leweslyh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值