仅参考:
1 IsaacLab中如何train (以rsl_rl)为例
位置: source/standalone/workflows/rsl_rl
# Copyright (c) 2022-2024, The Isaac Lab Project Developers.
# All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause
"""Script to train RL agent with RSL-RL."""
"""Launch Isaac Sim Simulator first."""
import argparse
import sys
from omni.isaac.lab.app import AppLauncher
# local imports
import cli_args # isort: skip
# add argparse arguments
parser = argparse.ArgumentParser(description="Train an RL agent with RSL-RL.")
#视频,布尔,默认不录视频
parser.add_argument("--video", action="store_true", default=False, help="Record videos during training.")
# 默认录制200步step的视频
parser.add_argument("--video_length", type=int, default=200, help="Length of the recorded video (in steps).")
# 默认2000步step记录一次视频
parser.add_argument("--video_interval", type=int, default=2000, help="Interval between video recordings (in steps).")
# 模拟的环境数量,没有指定,需要其他给定
parser.add_argument("--num_envs", type=int, default=None, help="Number of environments to simulate.")
# 任务名称
parser.add_argument("--task", type=str, default=None, help="Name of the task.")
# 环境的随机种子,保证训练的可重复性,
# 用相同的随机种子,后面的生成的随机序列是一样的。
parser.add_argument("--seed", type=int, default=None, help="Seed used for the environment")
# 最大迭代次数
parser.add_argument("--max_iterations", type=int, default=None, help="RL Policy training iterations.")
# append RSL-RL cli arguments
# RSL-RL 相关的命令行参数添加到 ArgumentParser
cli_args.add_rsl_rl_args(parser)
# append AppLauncher cli args
# 启动参数
AppLauncher.add_app_launcher_args(parser)
# 解析出的标准参数和其他参数
args_cli, hydra_args = parser.parse_known_args()
# always enable cameras to record video
# 传入了录制视频参数,就打开摄像头
if args_cli.video:
args_cli.enable_cameras = True
# clear out sys.argv for Hydra
# sys.argv[0] 通常是脚本的名称(例如,train.py),而 hydra_args 则是 parse_known_args() 方法返回的 Hydra 特定参数
# 避免冲突
sys.argv = [sys.argv[0]] + hydra_args
# launch omniverse app
# 用解析后的命令行参数配置
app_launcher = AppLauncher(args_cli)
simulation_app = app_launcher.app
"""Rest everything follows."""
import gymnasium as gym#工具包
import os#操作系统交互可以用于获取当前工作目录、创建文件夹、操作文件路径等
import torch##
from datetime import datetime#日期和时间
from rsl_rl.runners import OnPolicyRunner#导入强化学习训练库
from omni.isaac.lab.envs import DirectRLEnvCfg, ManagerBasedRLEnvCfg#Lab的直接或者管理器方式
from omni.isaac.lab.utils.dict import print_dict#读字典
from omni.isaac.lab.utils.io import dump_pickle, dump_yaml#将数据对象序列化为 Python 的 pickle 格式,YAML格式
import omni.isaac.lab_tasks # noqa: F401
from omni.isaac.lab_tasks.utils import get_checkpoint_path#检测点
from omni.isaac.lab_tasks.utils.hydra import hydra_task_config# Hydra 配置管理框架
#包装器,将强化学习环境批量环境等
from omni.isaac.lab_tasks.utils.wrappers.rsl_rl import RslRlOnPolicyRunnerCfg, RslRlVecEnvWrapper
torch.backends.cuda.matmul.allow_tf32 = True#矩阵乘法加速
torch.backends.cudnn.allow_tf32 = True
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
#通过装饰器传入任务
@hydra_task_config(args_cli.task, "rsl_rl_cfg_entry_point")
#环境和智能体配置
def main(env_cfg: ManagerBasedRLEnvCfg | DirectRLEnvCfg, agent_cfg: RslRlOnPolicyRunnerCfg):
"""Train with RSL-RL agent."""
# override configurations with non-hydra CLI arguments
#用命令行参数更新agent配置
agent_cfg = cli_args.update_rsl_rl_cfg(agent_cfg, args_cli)
#环境数量,如果命令行没指定,就默认
env_cfg.scene.num_envs = args_cli.num_envs if args_cli.num_envs is not None else env_cfg.scene.num_envs
#最大迭代
agent_cfg.max_iterations = (
args_cli.max_iterations if args_cli.max_iterations is not None else agent_cfg.max_iterations
)
# set the environment seed
# note: certain randomizations occur in the environment initialization so we set the seed here
#为了得到相同的结果
env_cfg.seed = agent_cfg.seed
#---------------------------------------------------------------
# specify directory for logging experiments
# 日志文件的根目录
log_root_path = os.path.join("logs", "rsl_rl", agent_cfg.experiment_name)
#绝对路径
log_root_path = os.path.abspath(log_root_path)
print(f"[INFO] Logging experiment in directory: {log_root_path}")
# specify directory for logging runs: {time-stamp}_{run_name}
log_dir = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
#如果代理配置中定义了 run_name,那么该名称将会添加到日志目录的末尾
if agent_cfg.run_name:
log_dir += f"_{agent_cfg.run_name}"
log_dir = os.path.join(log_root_path, log_dir)
#---------------------------------------------------------------
# create isaac environment
#重点:创建环境,输入注册的任务,环境配置,录视频就改变渲染模式
env = gym.make(args_cli.task, cfg=env_cfg, render_mode="rgb_array" if args_cli.video else None)
#----------------------------------------------------------------
# wrap for video recording
#视频录制包装
if args_cli.video:
video_kwargs = {
#设置视频文件夹路径,
"video_folder": os.path.join(log_dir, "videos", "train"),
#一个函数,定义了何时录制视频。在这里,视频录制每隔 args_cli.video_interval 步就触发一次
"step_trigger": lambda step: step % args_cli.video_interval == 0,
#
"video_length": args_cli.video_length,
#禁用环境的日志记录功能
"disable_logger": True,
}
print("[INFO] Recording videos during training.")
print_dict(video_kwargs, nesting=4)
#
env = gym.wrappers.RecordVideo(env, **video_kwargs)
#---------------------------------------------------------------------
# wrap around environment for rsl-rl
#是一个自定义的环境包装器,用于将环境适配为 rsl-rl 强化学习框架所需的格式
env = RslRlVecEnvWrapper(env)
#---------------------------------------------------------------------
#强化学习的训练运行器
# create runner from rsl-rl
# 重点:rsl-rl库的训练运行器
# 参数为:环境,字典形式的agent配置,日志路径,训练的硬件设备
runner = OnPolicyRunner(env, agent_cfg.to_dict(), log_dir=log_dir, device=agent_cfg.device)
# write git state to logs
# git状态
runner.add_git_repo_to_log(__file__)
# save resume path before creating a new log_dir
#新路径前保存恢复路径,用于中断后继续
if agent_cfg.resume:
# get path to previous checkpoint
resume_path = get_checkpoint_path(log_root_path, agent_cfg.load_run, agent_cfg.load_checkpoint)
print(f"[INFO]: Loading model checkpoint from: {resume_path}")
# load previously trained model
runner.load(resume_path)
#---------------------------------------------------------------------
# dump the configuration into log-directory
# 对象序列化并保存到文件中去
#环境配置
dump_yaml(os.path.join(log_dir, "params", "env.yaml"), env_cfg)
#agent配置
dump_yaml(os.path.join(log_dir, "params", "agent.yaml"), agent_cfg)
dump_pickle(os.path.join(log_dir, "params", "env.pkl"), env_cfg)
dump_pickle(os.path.join(log_dir, "params", "agent.pkl"), agent_cfg)
#---------------------------------------------------------------------
# run training
#开始训练
# 参数为最大迭代次数、 初始时随机的episode长度
runner.learn(num_learning_iterations=agent_cfg.max_iterations, init_at_random_ep_len=True)
#--------------------------------------------------------------------
# close the simulator
env.close()
if __name__ == "__main__":
# run the main function
main()
# close sim app
simulation_app.close()
2 IsaacLab中如何play (以rsl_rl)为例
导入库,导入生成环境,获取命令行参数等与训练基本一致
不同的地方在于
# load previously trained model
ppo_runner = OnPolicyRunner(env, agent_cfg.to_dict(), log_dir=None, device=agent_cfg.device)
# 加载模型
ppo_runner.load(resume_path)
# obtain the trained policy for inference
# 获取训练好的策略,在指定设备上运行
policy = ppo_runner.get_inference_policy(device=env.unwrapped.device)
# export policy to onnx/jit
#导出模型(从加载模型时的路径)
export_model_dir = os.path.join(os.path.dirname(resume_path), "exported")
export_policy_as_jit(
ppo_runner.alg.actor_critic, ppo_runner.obs_normalizer, path=export_model_dir, filename="policy.pt"
)
#PPO 的 actor-critic 网络,观测归一化,导出路径,导出文件名
export_policy_as_onnx(
ppo_runner.alg.actor_critic, normalizer=ppo_runner.obs_normalizer, path=export_model_dir, filename="policy.onnx"
)
#---------------------------------------------------------
# reset environment
#获取环境观测
obs, _ = env.get_observations()
timestep = 0
# simulate environment
while simulation_app.is_running():
# run everything in inference mode
#推理模式
with torch.inference_mode():
# agent stepping
#策略网络:输入obs,输出动作
actions = policy(obs)
# env stepping
#依据动作进入到环境中,获取下一obs,省去的其他信息一般为奖励,终止等
obs, _, _, _ = env.step(actions)
if args_cli.video:
timestep += 1
# Exit the play loop after recording one video
#达到长度,就不录了
if timestep == args_cli.video_length:
break
# close the simulator
env.close()