有时候,我们知道了一组变量的联合概率分布,但想要了解其中一个子集的概率分布。这种定义在子集上的概率分布被称为边缘概率分布(marginal probability distribution)。
例如,假设我们知道离散型随机变量
x
\textrm{x}
x和
y
\textrm{y}
y,并且我们知道
P
(
x
,
y
)
P\left ( \mathrm{x},\mathrm{y} \right )
P(x,y)。我们可以依据下面的求和法则来求解
P
(
x
)
P\left ( \mathrm{x} \right )
P(x)。
∀
x
∈
x
,
P
(
x
=
x
)
=
∑
y
P
(
x
=
x
,
y
=
y
)
\forall x\in \textrm{x},P(\textrm{x}=x)=\sum_{y}P(\textrm{x}=x,\mathrm{y}=y)
∀x∈x,P(x=x)=y∑P(x=x,y=y)
对于连续型随机变量,我们需要用积分代替求和:
p
(
x
)
=
∫
p
(
x
,
y
)
d
y
p(x)=\int p(x,y)dy
p(x)=∫p(x,y)dy
各种概率之间的关系:https://blog.csdn.net/tick_tock97/article/details/79885868