边缘概率

有时候,我们知道了一组变量的联合概率分布,但想要了解其中一个子集的概率分布。这种定义在子集上的概率分布被称为边缘概率分布(marginal probability distribution)。

例如,假设我们知道离散型随机变量 x \textrm{x} x y \textrm{y} y,并且我们知道 P ( x , y ) P\left ( \mathrm{x},\mathrm{y} \right ) P(x,y)。我们可以依据下面的求和法则来求解 P ( x ) P\left ( \mathrm{x} \right ) P(x)
∀ x ∈ x , P ( x = x ) = ∑ y P ( x = x , y = y ) \forall x\in \textrm{x},P(\textrm{x}=x)=\sum_{y}P(\textrm{x}=x,\mathrm{y}=y) xx,P(x=x)=yP(x=x,y=y)

对于连续型随机变量,我们需要用积分代替求和:
p ( x ) = ∫ p ( x , y ) d y p(x)=\int p(x,y)dy p(x)=p(x,y)dy

各种概率之间的关系:https://blog.csdn.net/tick_tock97/article/details/79885868

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值