目录
1 背景 BackgroundTypes of biological networks
Motivation for using co-expression networks
Network inference and reverse engineering
Basic graph terminology and data structures
Steps for building a co-expression network
Optimizing parameters for network construction
2 共表达流程 TutorialPreparing RNA-seq data for network construction
Building a co-expression network
Detecting co-expression modules
Annotating a co-expression network
Visualizing network正文开始
1.1 Types of biological networks
生物网络可以包含不同的数据类型,用点(node)和边(edge)区分。常见的网络类型:蛋白互作(PPI)
表示蛋白之间物理联系,它们几乎占据了细胞生物过程的中心位置。蛋白作为点,用无向的线连接
代谢网络
主要表示生化反应,有助于生物生长、繁殖、维持结构。点是代谢产物,并用有向的箭头表示代谢过程或特定反应的调节作用
基因互作
不同的点表示不同基因,描述它们功能相关性;可以根据基因的背景知识来推断线的方向
基因/转录调控
表示基因表达是如何被调控的;点是基因或转录因子,它们之间的关系也是定向,例如Reactome、KEGG等数据库中表示基因调节的关系
细胞信号
点表示通路中的物质,如蛋白、核酸或其他代谢物
各种通路
1.2 Motivation for using co-expression networks
为何研究共表达
看图说话:某个细胞受到刺激1,也许它的A通路就会上调表达,B通路下调,结果可能比刺激前还要理想;
受到另一种刺激2后,A通路下调,B通路上调,那么可能就比较糟糕
通过共表达网络,就可以探索A、B通路是如何被调控的,以及背后基因的相互关系;另外,互作的基因一般都参与同样的生物途径
一般来讲,探索基因表达数据的标准流程是这样:Differnentail ex