基于深度学习的抓取检测(grasp detection)相关论文解析

近几年深度学习技术蓬勃发展,其相关的应用场景也越来越多样化,比如本人做的机械手抓取物体就可以通过深度学习技术加以应用,优化出抓取目标物体的合适的中心坐标,旋转角以及爪盘开度。针对这个问题,目前绝大多数论文讨论的基本上都是基于目标检测领域(object detection)的检测框架(R-CNN,YOLO等),唯一不同的地方是抓取检测引入了机械爪抓取旋转角(orientation)这个目标参数。
机器人抓取检测这个研究方向对智能制造,工业4.0等还是有很重要的意义,因此本文就抓取检测领域的一些重要论文进行汇总研究(以后看了新的论文俺也会在这进行更新),前几篇论文都是很久之前的论文了,可能现在有更多前沿的技术,本人也不是专门研究机器人抓取这一块的,因此主要考虑自身的学习,对现有的论文进行整理研究,由于个人能力有限以及工作量太大,无法对全文作出全面的解析,因此有些部分只做简要的介绍,如有翻译或理解错误,还望大家批评指正:

序号 论文名 关键词
1 Deep Learning for Detecting Robotic Grasps(论文)(源码 两阶段,PR2,三维空间
2 Real-Time Grasp Detection Using Convolutional Neural Networks(论文)(源码 单阶段,实时 ,多抓取预测

一.Deep Learning for Detecting Robotic Grasps

1.介绍

这篇论文是抓取检测领域的一篇重要论文,还提供了开源数据集,源码和数据集都在项目官网上面可以下载。
介绍部分作者主要提到深度学习技术在一些任务上效果很好,前人主要的一些工作都集中在种类识别,人脸识别,行人识别等等,殊不知抓取也是一项检测任务,因此提出第一个创新:将深度学习应用在抓取的检测问题中。
随后指出一系列创新:利用RGBD多模态数据来提高抓取的效果,提出的两阶段检测系统等等,个人理解作者的两阶段检测相当于是添加预训练网络,提取第一个阶段的特征到主干网络进行再学习。
紧接着作者从机器人抓取这块讨论现有的主要是基于力闭合,形式来手工设计抓取评估参数,还有基于3D模型的抓取,这些基于物理场景重建的方法不适用于变化场景的抓取。
然后引入机器学习的应用,学习算法可以减少手工设计的过程,同时可以泛化模型可以检测从未见过的物体

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值