如何利用CloudCompare软件进行点云数据标注
https://blog.csdn.net/weixin_44603934/article/details/123591370
PointNet++训练自己的数据集(附源码)
http://www.xbhp.cn/news/39384.html
制作PointNet以及PointNet++点云训练样本
https://blog.csdn.net/CC047964/article/details/124345423
分类任务
主模块文件 train_classification.py
源代码
略
训练参数配置
def parse_args():
'''PARAMETERS'''
parser = argparse.ArgumentParser('training')
parser.add_argument('--use_cpu', action='store_true', default=False, help='use cpu mode')
parser.add_argument('--gpu', type=str, default='0', help='specify gpu device')
parser.add_argument('--batch_size', type=int, default=24, help='batch size in training')
parser.add_argument('--model', default='pointnet_cls', help='model name [default: pointnet_cls]')
parser.add_argument('--num_category', default=40, type

文章介绍了如何利用CloudCompare软件对点云数据进行标注,以及如何使用PointNet++训练自定义数据集。提供了训练参数配置的示例代码,包括GPU选择、batch_size、学习率等。此外,还详细解释了最远点采样(FarthestPointSampling)算法,并给出了PyTorch实现。文章以ModelNet40数据集为例,讨论了点云分类任务的训练过程。
最低0.47元/天 解锁文章
2338

被折叠的 条评论
为什么被折叠?



