单细胞数据读取(二)之Read10X读不出来dgCMatrix报错

前面我们也遇到过10x的数据读取不进去,如果大家遇到下面的报错,可以通过修改10x的原始重新读取,详细可以见链接https://blog.csdn.net/weixin_43949246/article/details/121225791
在这里插入图片描述
当然,这次跟大家说的是另一种10x的数据,同样的,我们先说报错,如果出现dgTMatrix的报错,我们该怎么办呢?
在这里插入图片描述
这里给大家推荐一种解决方法,首先先定义个函数,修改读取的方式

read10x_ymc <- function(
  data.dir = NULL,
  gene.column = 2,
  unique.features = TRUE,
  strip.suffix = FALSE,
  prefix='',
  suffix="tsv"
) {
   
  full.data <- list()
  for (i in seq_along(along.with = data.dir)) {
   
    run <- data.dir[i]
    if (!dir.exists(paths = run)) {
   
      stop("Directory provided does not exist")
    }
    barcode.loc <- file.path(run, paste(prefix,'barcodes.',suffix,sep=''))
    gene.loc <- file.path(run, paste(prefix,'genes.',suffix,sep=''))
    features.loc <- file.path(run, paste(prefix,'features.',suffix,'.gz',sep=''))
    matrix.loc=file.path(run,paste(prefix,'matrix.mtx',sep=''))
    # Flag to indicate if this data is from CellRanger >= 3.0
    pre_ver_3 <- file.exists(gene.loc)
    if (!pre_ver_3) {
   
      addgz <- function(s) {
   
        return(paste0(s, ".gz"))
      }
      barcode
``` # 加载必要包(确保已安装) library(Seurat) library(Matrix) library(data.table) # ---------------------------- # 设置输入路径和输出文件名 # ---------------------------- data_dir <- "/data/input/Files/Multi-species/Publical/17species/" # 注意路径斜杠 input_file <- "GSE237208_Peromyscus_count_mat.csv.gz" output_file <- "Peromyscus_seurat.rds" # 输出文件名 # 完整文件路径 file_path <- file.path(data_dir, input_file) # ---------------------------- # 验证路径和文件是否存在 # ---------------------------- if (!dir.exists(data_dir)) { stop("目录存在:", data_dir, "\n请检查路径权限或拼写!") } if (!file.exists(file_path)) { stop("文件存在:", file_path, "\n请检查文件名或文件权限!") } # ---------------------------- # 使用 fread 读取数据 # ---------------------------- # 读取CSV文件(自动解压.gz) count_data <- fread( file = file_path, header = TRUE, # 第一行为列名(细胞名) check.names = FALSE, # 保留特殊字符(如冒号) data.table = FALSE # 返回 data.frame 格式 ) # 提取基因名(第一列)并设为行名 rownames(count_data) <- count_data[[1]] count_data <- count_data[, -1, drop = FALSE] # 移除第一列 # ---------------------------- # 转换为稀疏矩阵 # ---------------------------- # 转换为普通矩阵 dense_matrix <- as.matrix(count_data) # 转换为稀疏矩阵(节省内存) sparse_matrix <- as(dense_matrix, "dgCMatrix") # 处理重复基因名(自动添加后缀) if (any(duplicated(rownames(sparse_matrix)))) { rownames(sparse_matrix) <- make.unique(rownames(sparse_matrix)) message("检测到重复基因名,已自动添加后缀去重。") } # ---------------------------- # 创建Seurat对象 # ---------------------------- seurat_obj <- CreateSeuratObject( counts = sparse_matrix, project = "Peromyscus", # 自定义项目名 min.cells = 3, # 保留至少在3个细胞中表达的基因 min.features = 200 # 保留至少检测到200个基因的细胞 ) # ---------------------------- # 保存结果 # ---------------------------- saveRDS(seurat_obj, file.path(data_dir, output_file)) # ---------------------------- # 验证输出 # ---------------------------- cat("\n===== 处理完成 =====") cat("\nSeurat对象信息:") print(seurat_obj) cat("\n输出文件路径:", file.path(data_dir, output_file))```# 读取CSV文件(自动解压.gz) count_data <- fread( file = file_path, header = TRUE, # 第一行为列名(细胞名) check.names = FALSE, # 保留特殊字符(如冒号) data.table = FALSE # 返回 data.frame 格式 )时出现报错:Error in fread(file = file_path, header = TRUE, check.names = FALSE, data.table = FALSE): To read gz and bz2 files directly, fread() requires 'R.utils' package which cannot be found. Please install 'R.utils' using 'install.packages('R.utils')'. Traceback: 1. fread(file = file_path, header = TRUE, check.names = FALSE, data.table = FALSE) 2. stop("To read gz and bz2 files directly, fread() requires 'R.utils' package which cannot be found. Please install 'R.utils' using 'install.packages('R.utils')'.")
最新发布
04-08
<think>嗯,用户在使用fread函数读取压缩的CSV文件时遇到了错误,提示需要安装R.utils包。首先,我需要确认这个错误的原因。根据错误信息,当fread直接读取.gz或.bz2文件时,必须依赖R.utils包,而用户的系统中可能没有安装这个包。 接下来,我应该检查用户提供的代码。用户确实在调用fread时传入了.gz文件路径。虽然fread本身支持读取压缩文件,但需要R.utils来解压。因此,解决方法就是安装R.utils包。 过,用户可能会尝试直接运行install.packages("R.utils"),但在某些情况下,比如没有管理员权限或者R的版本问题,安装可能会遇到困难。这时候可能需要考虑其他方法,比如手动解压文件后再读取。 另外,我需要确保用户了解安装包的正确步骤,包括选择合适的镜像源,或者如果他们在Linux系统上,可能需要安装相关的系统依赖。例如,在Ubuntu上,可能需要先安装zlib1g-dev之类的库才能成功编译R.utils。 还有一种可能性是用户已经安装了R.utils,但由于某些原因没有被正确加载。这时候可以建议用户检查是否已经安装,或者尝试用library(R.utils)来加载,看看是否有其他错误信息。 如果安装R.utils可行,替代方案比如使用gunzip手动解压文件,或者使用base R的read.csv函数(虽然可能效率较低),也是可以考虑的选项。但考虑到用户处理的是单细胞数据,文件可能很大,使用fread会更高效,所以推荐优先安装R.utils。 最后,确保用户理解错误信息的含义,并能够根据指导一步步解决问题。可能需要分步骤说明安装过程,并验证安装是否成功,然后重新运行代码。</think>在R中使用$fread()$读取压缩文件时,若遇到依赖`R.utils`包的报错,请按以下步骤解决: --- ### **步骤1:安装缺失的依赖包** 直接运行以下命令安装`R.utils`: ```R install.packages("R.utils") ``` --- ### **步骤2:验证安装是否成功** 安装完成后,加载包确认无报错: ```R library(R.utils) ``` --- ### **步骤3:重新运行原代码** 确保代码中已正确设置文件路径: ```R file_path <- "/data/input/Files/Multi-species/Publical/17species/GSE237208_Peromyscus_count_mat.csv.gz" count_data <- fread( file = file_path, header = TRUE, check.names = FALSE, data.table = FALSE ) ``` --- ### **替代方案(如安装仍失败)** #### 方法1:手动解压后读取 在终端解压文件: ```bash gunzip /data/input/Files/Multi-species/Publical/17species/GSE237208_Peromyscus_count_mat.csv.gz ``` 然后在R中读取解压后的CSV: ```R count_data <- fread("/data/input/Files/Multi-species/Publical/17species/GSE237208_Peromyscus_count_mat.csv", ...) ``` #### 方法2:使用base R函数读取推荐大文件) ```R count_data <- read.csv(gzfile(file_path), check.names = FALSE, row.names = 1) ``` --- ### **关键报错原因** - $fread()$需要`R.utils`处理**直接读取压缩文件**的功能。 - 未安装该包时,R无法自动解压`.gz`文件。 --- ### **注意事项** 1. **Linux系统权限问题**:若在服务器运行,可能需要管理员权限安装包(联系管理员或使用个人库路径)。 2. **路径斜杠**:确保路径中的目录分隔符正确(Linux用`/`,Windows用`\`或`/`)。 3. **文件完整性**:验证`.gz`文件未损坏(如通过`gunzip -t file.gz`)。 --- ### **验证代码修复** 安装后重新运行代码应无报错,输出类似: ``` ===== 处理完成 ===== Seurat对象信息: An object of class Seurat 20000 features across 5000 samples 输出文件路径: /data/.../Peromyscus_seurat.rds ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值