串联机械臂运用过程中常用到正逆运动学,正运动学指的是已知关节空间变量关节角或角速度,求取操作空间的位置或速度;逆运动学是指已知操作空间的位姿或速度,求取关节空间的关节角或关节速度。
正运动学
首先需要获取运动链,获取方法可以参照我写的PyKDL—运动段、运动链和运动树,本文不在介绍。
运动学部分需要明白一个特点,输入参数也会输出参数,应用了Python的引用机制,对于串联机器人,运动学都是基于运动链完成,都需要输入运动链。
#正运动学
fk = PyKDL.ChainFkSolverPos_recursive(chain)
pos = PyKDL.Frame()
q = PyKDL.JntArray(7)
for i in range(7):
q[i] = 0
q[0] = 1
fk_flag = fk.JntToCart(q, pos)
print "fk_flag", fk_flag
print "pos", pos
逆运动学
KDL库的逆运动学是数值解法求取的,有多种数值解法,相关解法原理可能在后面我也会写,本文给出其中一种。
#逆运动学
ik_v = PyKDL.ChainIkSolverVel_pinv(chain)
ik = PyKDL.ChainIkSolverPos_NR(chain, fk, ik_v, maxiter=100, eps=math.pow(10, -9))
qq = PyKDL.JntArray(7)
qq_k = PyKDL.JntArray(7)
ik.CartToJnt(qq_k, pos, qq)
print