PyKDL---正运动学和逆运动学

这篇博客主要探讨了PyKDL库在正运动学和逆运动学中的应用。在正运动学部分,强调了运动链的重要性,指出输入参数也会输出参数。而在逆运动学中,介绍了KDL库采用数值解法求解,并预告可能后续会讲解相关解法原理。最后,提供了完整的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PyKDL---正运动学和逆运动学


串联机械臂运用过程中常用到正逆运动学,正运动学指的是已知关节空间变量关节角或角速度,求取操作空间的位置或速度;逆运动学是指已知操作空间的位姿或速度,求取关节空间的关节角或关节速度。

正运动学

首先需要获取运动链,获取方法可以参照我写的PyKDL—运动段、运动链和运动树,本文不在介绍。
运动学部分需要明白一个特点,输入参数也会输出参数,应用了Python的引用机制,对于串联机器人,运动学都是基于运动链完成,都需要输入运动链。

#正运动学
fk = PyKDL.ChainFkSolverPos_recursive(chain)

pos = PyKDL.Frame()
q = PyKDL.JntArray(7)
for i in range(7):
    q[i] = 0
q[0] = 1
fk_flag = fk.JntToCart(q, pos)
print "fk_flag", fk_flag
print "pos", pos

逆运动学

KDL库的逆运动学是数值解法求取的,有多种数值解法,相关解法原理可能在后面我也会写,本文给出其中一种。

#逆运动学
ik_v = PyKDL.ChainIkSolverVel_pinv(chain)
ik = PyKDL.ChainIkSolverPos_NR(chain, fk, ik_v, maxiter=100, eps=math.pow(10, -9))

qq = PyKDL.JntArray(7)
qq_k = PyKDL.JntArray(7)
ik.CartToJnt(qq_k, pos, qq)
print 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值