静止坐标系和旋转坐标系变换的线性化,锁相环线性化通用推导

在这里插入图片描述
将笛卡尔坐标系的电压 [ U x , U y ] [U_x, U_y] [Ux,Uy] 通过旋转变换(由锁相环角度 θ P L L \theta_{PLL} θPLL 控制)转换为 dq 坐标系下的电压 [ U d , U q ] [U_d, U_q] [Ud,Uq]。这个公式是非线性的,因为它涉及到正弦和余弦函数。

图片中的推导过程主要描述了在变流器控制中,从静止坐标系(xy坐标系)到旋转坐标系(dq坐标系)的变换关系,并进一步通过线性化近似来简化该变换。

xy坐标系(αβ)到dq坐标系的变换关系

变换公式如下:

( U d , i U q , i ) = ( cos ⁡ θ P L L , i sin ⁡ θ P L L , i − sin ⁡ θ P L L , i cos ⁡ θ P L L , i ) ( U x , i U y , i ) \begin{pmatrix} U_{d,i} \\ U_{q,i} \end{pmatrix} = \begin{pmatrix} \cos \theta_{PLL,i} & \sin \theta_{PLL,i} \\ -\sin \theta_{PLL,i} & \cos \theta_{PLL,i} \end{pmatrix} \begin{pmatrix} U_{x,i} \\ U_{y,i} \end{pmatrix} (Ud,iUq,i)=(cosθPLL,isinθPLL,isinθPLL,icosθPLL,i)(Ux,iUy,i)

( I d , i I q , i ) = ( cos ⁡ θ P L L , i sin ⁡ θ P L L , i − sin ⁡ θ P L L , i cos ⁡ θ P L L , i ) ( I x , i I y , i ) \begin{pmatrix} I_{d,i} \\ I_{q,i} \end{pmatrix} = \begin{pmatrix} \cos \theta_{PLL,i} & \sin \theta_{PLL,i} \\ -\sin \theta_{PLL,i} & \cos \theta_{PLL,i} \end{pmatrix} \begin{pmatrix} I_{x,i} \\ I_{y,i} \end{pmatrix} (Id,iIq,i)=(cosθPLL,isinθPLL,isinθPLL,icosθPLL,i)(Ix,iIy,i)

假设角度 θ P L L , i \theta_{PLL,i} θPLL,i 小偏差为 Δ θ P L L , i \Delta \theta_{PLL,i} ΔθPLL,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱代码的小黄人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值