人工智能咨询培训老师叶梓 转载标明出处
想要掌握如何将大模型的力量发挥到极致吗?叶老师带您深入了解 Llama Factory —— 一款革命性的大模型微调工具(限时免费)。
1小时实战课程,您将学习到如何轻松上手并有效利用 Llama Factory 来微调您的模型,以发挥其最大潜力。
CSDN教学平台录播地址:https://edu.csdn.net/course/detail/39987
更多分享,关注视频号(直播分享):sphuYAMr0pGTk27 抖音号:44185842659
Evo2 是由斯坦福大学、英伟达、Arc研究所、加州大学伯克利分校和加州大学旧金山分校的科学家联合发布的生物学大模型,其完整版包含 400亿参数,训练数据覆盖 12.8万个物种 的 9.3万亿个核苷酸。这一模型的发布标志着AI在生物学领域的重大突破,为基因组学、精准医学、药物研发和合成生物学带来了全新的可能性。
传统的生物学研究依赖于实验方法和数据分析,但随着基因组学的快速发展,海量的基因组数据需要更高效、更智能的工具来处理和解读。Evo2的出现,正是为了解决这一问题。它能够处理和分析长达一百万个核苷酸的基因组序列,覆盖DNA、RNA和蛋白质等多种生物学基本语言。这一能力使其在以下几个方面展现出巨大潜力:
-
基因组生成与设计:Evo2能够生成完整的基因组序列,甚至可以设计出具有特定功能的基因组,例如酵母染色体、人类线粒体基因组和生殖支原体的原核基因组。这为合成生物学提供了强大的工具,有望设计出具有特殊性能的生命体,填补自然界不存在的生态位。
-
疾病预测与精准医疗:Evo2能够精准识别基因突变与疾病之间的关联,无需针对人类疾病数据进行专门训练。例如,在乳腺癌相关基因BRCA1的变体测试中,Evo2的预测准确率超过90%。这一能力为个性化医疗提供了有力支持,未来有望通过分析患者的基因组数据,为患者提供精准的治疗方案。
-
药物研发与基因治疗:Evo2不仅可以解读基因序列,还能设计新的基因组和生物分子,如蛋白质分子。这意味着研究人员可以利用该模型设计出针对特定疾病靶点的新型药物分子,加速药物研发的进程。此外,Evo2还能够设计仅在特定细胞类型中激活的基因元件,提高基因治疗的安全性。
Evo2的核心技术和方法
Evo2的开发采用了创新的技术架构和方法。它基于stripedhyena2架构,与传统的Transformer架构不同,它能够更高效地处理基因组数据,并捕捉基因组内部的相互作用。这种架构不仅响应速度更快,还能自主学习外显子—内含子边界以及转录因子结合位点等关键信息。
在训练过程中,Evo2使用了 12.8万个物种 的基因组数据,这些数据包含 9.3万亿个核苷酸。模型训练在英伟达DGX Cloud AI平台上完成,使用了 2000多张H100 GPU,使其能够处理比前代模型多30倍的数据量。这种大规模的训练使得Evo2能够一次性处理多达 100万个碱基对,显著提升了其在基因组长序列处理方面的能力。
Evo2的功能与应用
Evo2能够执行跨 DNA、RNA和蛋白质 的通用预测和设计任务。例如,它能够生成完整的基因组序列,包括酵母染色体、人类线粒体基因组和生殖支原体的原核基因组。此外,Evo2在精准医学领域展现出巨大潜力,能够无需针对人类疾病数据进行专门训练,精准识别基因突变与疾病之间的关联。在乳腺癌相关基因 BRCA1 的变体测试中,Evo2的预测准确率超过 90%。
在药物研发方面,Evo2不仅可以解读基因序列,还能设计新的基因组和生物分子,例如蛋白质分子。这为研究人员提供了设计针对特定疾病靶点的新型药物分子的可能性。此外,Evo2还能够设计仅在特定细胞类型中激活的基因元件,例如新的转座子或基因开关,从而提高基因治疗的安全性。
Evo2的开源与平台化
Evo2是生物学领域最大规模的全面开源模型之一。研究团队在GitHub上发布了其训练数据、训练和推理代码以及模型权重,为全球研究人员提供了强大的工具。此外,研究人员还开发了一个名为 Evo Designer 的在线AI平台,科学家可以输入基因组序列,并在该平台上进行基因组生成和预测。
Evo2的开源不仅降低了基因组设计的门槛,还为生物工程领域的大规模创新提供了可能。其背后的缔造者,Arc研究所,提出了一个更为宏大的目标:模拟整个细胞。未来,Evo2有望将基因组数据与表观遗传学、蛋白质组学等各类数据相结合,实现更大规模的生命编程。
GitHub开源地址:https://github.com/arcinstitute/evo2
Evo Designer在线平台:https://arcinstitute.org/tools/evo/evo-designer
网页地址:https://arcinstitute.org/tools/evo/evo-designer