京东无人车算法面试(一面)

面试汇总 专栏收录该内容
2 篇文章 0 订阅

1.半小时手撕代码,找二叉树中任意两节点之间的路径。
2.C++ final、const修饰成员函数作用。
3.问项目
1)你定位时车速多少,建图时车速多少?
2)你做的二维定位,三维怎么做?
3)对loam框架有什么改进?地面高程差怎么图优化?可以考虑添加GNSS的z值优化高程差效果会更好。里程计先聚类会更好点。
4)遇到什么困难?重影什么原因引起的?
5)IMU去畸变做过没有?10m/s时(高速)用IMU去畸变不行,有什么好方法?
6)你这个语义建图定位是怎么做的?
7)你的标定是GPS和lidar分离,实际中两者在同一个盒子中,固连在一起,怎么标定?
8)工程上有什么技术问题我们互相探讨下?

  1. 我们用的是scout公司生产的UGV小车,车速控制在0.5m/s~2m/s;
  2. 我们采用UGV小车搭载激光雷达和IMU采集环境数据,然后使用LOAM算法进行定位与地图构建;
  3. LOAM框架的改进:
    LEGO-LOAM:提取地面点并去除地面点,提取分割点,在分割点基础上进行边角点-边角线匹配、平面点-平面线匹配,添加基于ICP的回环检测模块,并采用gtsam库对回环因子、里程计因子进行后端优化。该方法提高了slam效率,但是点云图较为稀疏。
    Lio-sam:加入imu预积分因子作为点云去畸变的依据,并将里程计因子、建图因子、预积分因子、回环检测因子一同加入GTSAM后端优化。
    Sc-lego-loam:采用scan-context(全局描述符)方法进行回环检测,提高场景识别效率。
    地图高程差怎么优化:
    加地面高度约束?地面距离激光雷达的高度是保持不变的,能否以这个为切入点来优化高程差?我跑legoloam的时候就经常跑到天上去,大概是因为lego是剔除地面点的?loam虽然不是轻量级的,但是他没有剔除地面点,跑出来的效果也不错。或许在做帧间匹配提取特征点的时候,尽量保持一定占比的地面点?
  4. 重影:
    点云太过稠密?杂质点太多?匹配的不准?
  5. Imu去畸变:
    参考lio-mapping和lio-sam;高速运动状态下用匀速运动假设,低速或变速状态下用IMU?
  6. 语义图
    采用几何特征来表征每帧点云图,并基于该几何特征图来执行场景识别或回环检测中的相似度评价
  7. 没试过。。。
  8. 激光slam、车道线检测、路沿检测、回环检测等跑过的代码。。。以及激光雷达强度信息如何使用、激光雷达在工程上的安装高度与角度、激光雷达在安防上的应用、激光雷达在目标检测上的应用?
  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值