机器人灵巧手触觉感知一直是机器人研究的一个热点问题。灵巧操作要求灵巧手能够准确地反馈自己的状态并感知周围环境。国际期刊IJARS发表了面向机器人灵巧操作的感知研究综述。
根据传感器在机械手中的作用和布局,首先介绍了两种类型的传感器,即灵巧手内部感知传感器和外部感知传感器。这些传感器为机械手提供了丰富的信息:包括姿态、物体的接触信息和环境的物理信息。然后,综合分析了用于灵巧手的感知方法,将其分为三个等级:规划级(planning level)、控制级(control level)和学习级(learning level)感知。最终对触觉感知领域的一些潜在研究方向进行了总结和讨论。文章整体框架如图1所示。
图1 用于灵巧手的感知,感知方法及其操作
1、用于灵巧手的传感器及其分类
灵巧操作的实现需要机器人双手感知外部环境信息和自身状态。传感器按其在机械手中的布局可分为内传感器和外传感器两大类。图2分别介绍了两种传感器在灵巧手中的分类。
图2 灵巧手传感器分类
1.1 灵巧手内部感知传感器
内部传感器用于反馈机械手自身的位置或力等状态信息。这两种信息是机械手不可缺少的部分。在机械系统的装配过程中,由于存在各种误差,实际传动部分可能会受到这些误差的影响。因此需要内在传感器使机械手更好地了解自己的状态。三种典型的内部传感器包括位置传感器、弯曲传感器和张力传感器。
位置传感器。由于机械手关节空间小,对关节传感器的体积要求较高。根据不同的原理,提出了多种关节传感器。在早期,关节位置通常由霍尔效应传感器测量,如Cyber hand,21,并在每个关节上安装8个霍尔效应传感器。另外,通过改变霍尔传感器的结构,可以很好地测量关节角Palli和Pirozzi18为机器人手指设计了一种光学角度位置传感器。Petkovic等人23利用导电硅橡胶设计了一种被动柔性机器人关节,它不仅可以测量关节角度,还可以作为阻尼器来保护关节。霍尔效应传感器也可以测量电机的位置。
弯曲传感器。对于肌腱驱动的机械手,肌腱的位移总是随着腱鞘形状的变化而变化。它被认为是一种可能导致控制精度下降的位置误差。在这种情况下,仅利用肌腱的张力信息来控制机器人可能会产生误差。为了解决这一问题,研究者发明了可以测量护套弯曲角度的弯曲传感器。该弯曲传感器具有高分辨率和大弯曲传感范围的特点。在随后的工作中,他们结合弯曲传感器,提出了一种新颖的补偿波登索结构输出力非线性变化的方法。无需直接测量输出张力,即可精确控制腱缆的张力。
关节扭矩传感器。DLR手27配备了测量关节扭矩的应变计和测量关节位置的电位计。在随后的DLR手II中,28作者使用霍尔效应传感器代替电位器来测量关节位置。Shadow手的每个手指都配备了一个关节扭矩传感器。传感器支持手,实现精确操作。Tsetserukou等人提出了一种光学关节扭矩传感器来取代应变片。利用该传感器,提出了一种基于位置的灵巧抓取局部阻抗控制方法。
张力传感器。肌腱只能提供一个方向的力,在肌腱路径上的摩擦损失很难用精确的数学模型来建立。研究人员通常使用张力传感器来测量肌腱张力。Salisbury和Craig