同个指标,两篇二区!NHANES膳食指标CDAI了解一下| NHANES数据库周报(10.19~10.25)...

09773075ddcecace9a7a42e2485c620d.png

美国国家健康和营养检查调查(NHANES)是一项旨在评估美国成人和儿童健康和营养状况的研究计划。该调查的独特之处在于它结合了访谈和体格检查。由美国疾病控制和预防中心(CDC)负责为国家提供健康统计数据。

NHANES计划始于20世纪60年代初,并作为一系列针对不同人口群体或健康主题的调查进行。自1999年以来,对美国的人口健康状况进行了更为定期的调查。每次调查中,来自美国约3000个县中30个选定县的约10000名参与者被要求在移动检查中心(MEC)参加家庭访谈、随后的身体检查和实验室测试。

NHANES访谈包括人口统计,社会经济,饮食和健康相关问题。检查部分包括医疗,牙科和生理测量,以及由训练有素的医务人员进行的实验室测试。

9c540fcad6c67a1e5784d441bb5f5ce2.jpeg

一、2024年NHANES文献预览

本周PubMed数据库“标题/摘要:NHANES”搜索发现,共发表52篇NHANES论文。其中1篇一区,24篇二区

1.中国学者文章介绍(一)

b15c9d8fcf3730814e2a06e5e383f318.png

文章题目:血清白蛋白和肝功能障碍介导了美国成年人有机磷农药暴露与高血压之间的关系。

研究背景与目的:有机磷农药由于其广泛使用和生物学特性,普遍威胁着人类健康。然而,OPPs代谢产物的混合物对高血压风险的联合作用和潜在机制仍然有限。在美国普通人群中,全面调查口服避孕药暴露对高血压风险的影响,并探讨其潜在机制。

数据来源:国家健康和营养调查(NHANES)的尿OPPs代谢物(磷酸二烷基酯化合物,DAP)的可用数据

方法 :这项横断面研究收集了美国成年人,以评估DAP与高血压风险的关系。调查加权Logisitic回归,限制性立方样条图(RCS)和混合暴露分析模型[加权分位数和回归(WQS)和贝叶斯核机器回归(BKMR)]分别用于分析尿DAP代谢物和高血压风险之间的个体,剂量-反应和组合相关性。中介分析确定了血清白蛋白和肝功能在上述关联中的潜在中介作用。

结果:与对照组相比,DEP、DMTP、DETP和DMDTP水平最高的参与者患高血压的风险增加了1.21倍(95%CI:1.02-1.36)、1.20倍(95%CI:1.02-1.42)、1.19倍(95%CI:1.01-1.40)和1.17倍(95%CI:1.03-1.43)。RCS曲线也显示了个体DAP与高血压风险的正向风险-反应相关性。WQS和BKMR分析进一步证实DAP混合物与高血压风险增加显著相关,DEP被确定为联合效应的主要贡献者。中介作用分析表明,血清白蛋白和AST/ALT比值在个体尿和混合尿DAP与高血压患病率的关系中起着重要的中介作用。

结论:本研究为探讨尿中OPPs对高血压的个体和联合作用及其可能的驱动机制提供了新的视角,对环境控制和高血压的早期预防具有重要意义。

d117cbd254223914ff32a7f068451cfb.png

2.外国学者文章介绍(二)

656bb47cca73dfb20608faf2781170c2.png

文章题目:基于脊柱形态学参数的可解释机器学习估计生物年龄。

研究背景准确估计生物学年龄有利于测量衰老和预测风险。人们普遍认为,脊柱压缩的患病率随着年龄的增长而显著增加。然而,很少报告基于椎骨形态学数据的生物学年龄。

数据来源:在这项研究中,共有2,364名参与者参加了国家健康和营养检查调查,并从双能X线吸收测量仪扫描的侧位X线片中收集了脊柱的形态参数。

结果:脊柱的生物年龄,称为SpineAge,通过机器学习模型的参数计算。SHapley加法解释用于更好地解释每个参数的贡献。此外,加速老化指数(AAI)定义为SpineAge减去实际年龄,用于量化脊柱的加速老化程度。结果表明,SpineAge在预测2年和5年全因死亡率方面优于实足年龄。调整所有协变量后,AAI和全因死亡风险之间存在显著相关性。具体而言,AAI每增加1年,全因死亡风险增加25.9%(危险比,1.259; 95% CI,1.087-1.457; P< 0.001)。以AAI的第一个四分位数作为参考,第二、第三和第四个四分位数的死亡风险为2.389(95% CI,1.064-5.364; P = 0.035)、5.911(95% CI,2.241-15.590; P < 0.001)和22.925(95% CI,4.744-110.769; P < 0.001)倍。

结论开发了一种新的高度适用的生物年龄预测因子,用于预测个体化的长期预后并促进个性化护理。

f078e202724f1c8fd1c76becf5f03e16.png

3.中国学者文章介绍(三)

a323617e685a6a5c8bc5d96a5b7b6e73.png

文章题目:综合膳食抗氧化指数和摄入时间与NAFLD的关联:美国国家健康和营养检查调查,2017-2020。

研究背景:食物摄入的时间可以影响身体的生理和代谢功能。然而,膳食抗氧化剂摄入的时间是否以及如何影响非酒精性脂肪肝(NAFLD)在很大程度上是未知的。综合膳食抗氧化剂指数(CDAI)是一个综合指标,涵盖了各种膳食抗氧化剂。本研究旨在调查美国成年人CDAI和NAFLD的进餐时间之间的关系。

数据来源:2017-2020年国家健康和营养检查调查(NHANES)的数据。

方法 :通过实施两个非同步的24小时饮食回忆来评估饮食摄入量。采用振动控制的瞬时弹性成像来评估作为NAFLD指标的受控衰减。将一天中的CDAI(总、早餐、午餐、晚餐)和Δ CDAI(Δ =晚餐-早餐)分为四分位数。采用加权logistic回归模型和限制性三次样条来评估CDAI的进餐时间与NAFLD之间的关联。

结果:在这项研究的6570名参与者中,1153人患有NAFLD。总CDAI水平最高四分位数的参与者与最低四分位数相比,NAFLD的风险较低(OR = 0.52; 95%CI,0.38-0.71)。更重要的是,与最低四分位数相比,晚餐CDAI最高四分位数的参与者(而不是早餐或午餐的参与者)患NAFLD的风险较低(OR = 0.54; 95%CI,0.40-0.73)。限制性立方样条图表明总CDAI和NAFLD之间的线性关系(非线性P= 0.70),以及晚餐CDAI和NAFLD之间的线性关系(非线性P= 0.19)。分层分析显示,晚餐CDAI对NAFLD的影响在非西班牙裔白人和其他种族的个体之间存在差异(相互作用P= 0.032)。

结论:这些发现表明富含抗氧化剂的饮食和策略性进餐时间对NAFLD具有潜在的有益作用。

9ca0c489bf6798a6c86eb44636de15a7.png

4.中国学者文章介绍(四)

f7bb8ae62a8ac6cd0366850429e5f2ea.png

文章题目:复合膳食抗氧化指数与腹主动脉钙化:一项全国横断面研究。

研究目的:综合膳食抗氧化指数(CDAI)是一种评价膳食抗氧化潜力的新方法。我们的目标是探索40岁以上美国成年人的CDAI与腹主动脉钙化(AAC)之间的联系。

数据:2013-2014年国家健康和营养检查调查(NHANES)数据库中年龄≥ 40岁的个体的饮食和AAC数据

方法 :使用六种膳食抗氧化剂计算CDAI。使用称为AAC-24的半定量评分系统评估AAC,AAC评分大于6为重度AAC(SAAC)。为了检查CDAI和AAC(包括SAAC)之间的相关性,应用线性/逻辑回归分析和平滑曲线拟合。

结果:共纳入2,640例受试者,随着CDAI水平的升高,AAC评分和SAAC患病率显著降低(P<0.01)。校正混杂因素后,CDAI与AAC评分(β =-0.083,95%CI-0.144-0.022,P = 0.008)和SAAC(OR = 0.883,95%CI 0.806-0.968,P = 0.008)之间分别建立了明确的联系。进一步的平滑曲线拟合表明CDAI与AAC评分和SAAC均呈负相关。

结论:饮食抗氧化剂的消耗,量化的CDAI,显示出与AAC的风险成反比。额外的纵向和干预研究是必不可少的。

5748c602bf2310ce8721c08b8828911f.png

5.外国学者文章介绍(五)

c29caf6648fa408195f16d2b814e5f83.png

文章题目:不同种族8 ~ 19岁青少年体质指数与肥胖的横断面关系。

研究目的评价高体重指数(BMI)对8 ~ 19岁青少年高肥胖的筛查能力。

数据来源2011年至2018年的6454名国家健康和营养调查参与者。

方法 :用双能X线吸收法(DXA)测量脂肪和瘦体重。我们用脂肪质量指数(FMI,kg/m2)和%脂肪来表示肥胖。

结果:根据疾病控制和预防中心的第95百分位数,高BMI正确地将每个种族和民族中约95%的参与者归类为高FMI。大约81%(黑人)到90%(西班牙裔)的高BMI参与者也有高FMI。此外,BMI高的儿童患高FMI的可能性是BMI“正常”儿童的17倍(西班牙裔)至46倍(黑人)。高BMI对高%脂肪的筛查能力较弱,因为%脂肪水平受脂肪质量(分子)和瘦体重(分母)的影响。

结论:尽管身体成分存在差异,但高BMI是一个非常好的筛查工具,不仅可以识别白色8- 19岁的人群,也可以识别亚洲人、黑人和西班牙裔人群。与%脂肪相比,FMI可能是儿童和青少年更好的肥胖指标。

093c939a44aaea8c22ea317d9b510ce5.png

更多文章如下:

外国学者:

cfbe194df34dfc802bd91eef7898f29a.png

中国学者:

bdc1d3d51e4f789a556b7812a70fa85e.pngcebe88419fd8ed054c4a0849d55eeb4d.png30b5e72258e4076db3dfa485eb0c6056.png

一个专门做公共数据库的公众号,关注我们

ffdc4dfa81661251e54619b2d982b94a.png

### NHANES 数据库中的具体指标信息 NHANES(国家健康与营养调查)数据库包含大量详细的健康和营养数据,这些数据被分类到不的组件中。为了找到特定的指标说明文档,建议关注以下几个方面: #### 组件划分 自1999年起,NHANES进入了“连续调查周期”,每两年发布一次新数据。该数据库的数据按收集方式分为五个主要部分[^1]。每个部分都包含了若干个相互关联的数据文件,这有助于用户更高效地下载并分析所需的具体领域内的资料。 #### 获取指标描述 对于想要了解某个具体测量项或变量的意义及其定义的人来说,在官方发布的各期《Data Documentation and Related Files》里可以查到详尽解释。这类文档不仅涵盖了各个变量名称、标签以及单位等基本信息,还可能附带一些关于如何解读某些特殊编码值的重要提示。 例如,如果要查询血压这一常见体检项目的记录情况,则可以在相应年份的心血管疾病模块下的`BPQ`问卷表单或者体格检查报告(`PE`)中寻找对应的字段名,并通过配套的手册来获取完整的背景介绍和技术细节。 ```r library(dplyr) # 假设已加载某一期NHANES心血管子集作为dataframe对象df_bpq glimpse(df_bpq) ``` 此代码片段展示了如何利用R语言读取并初步查看一个假设存在的NHANES心血管子集中所含有的列信息,从而帮助定位感兴趣的生理参数位置。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值