四元数和欧拉角优缺点

欧拉旋转

优点

       很容易理解,形象直观;表示更方便,只需要3个值(分别对应x、y、z轴的旋转角度);但按我的理解,它还是转换到了3个3*3的矩阵做变换,效率不如四元数;

缺点

     之前提到过这种方法是要按照一个固定的坐标轴的顺序旋转的,因此不同的顺序会造成不同的结果;

     会造成万向节锁(Gimbal Lock)的现象。这种现象的发生就是由于上述固定坐标轴旋转顺序造成的。理论上,欧拉旋转可以靠这种顺序让一个物体指到任何一个想要的方向,但如果在旋转中不幸让某些坐标轴重合了就会发生万向         节锁,这时就会丢失一个方向上的旋转能力,也就是说在这种状态下我们无论怎么旋转(当然还是要原先的顺序)都不可能得到某些想要的旋转效果,除非我们打破原先的旋转顺序或者同时旋转3个坐标轴。这里有个视频可以直观的理解下;

      由于万向节锁的存在,欧拉旋转无法实现球面平滑插值;

四元数旋转

Quaternion.Euler(transform.eulerAngles+Aisx))

Quaternion.eulerAngles(transform.eulerAngles+Aisx))

两个都可以,只是上面版本比较高,后面这个适用于低版本。

transform.rotation = Quaternion.AngleAxis(degrees, transform.right) * transform.rotation;

优点

 可以避免万向节锁现象;

只需要一个4维的四元数就可以执行绕任意过原点的向量的旋转,方便快捷,在某些实现下比旋转矩阵效率更高;

可以提供平滑插值;

缺点

    比欧拉旋转稍微复杂了一点点,因为多了一个维度;

    理解更困难,不直观;

万向节锁

         其实就是一个物体在一个3D世界里面随着旋转顺序和旋转角度的改变,导致物体只能在一个固定的平面旋转,无法旋转到你预想的角度。. 由于物体的旋转,物体的坐标轴方向也发生了改变,导致其中2条坐标轴发生了 重合 。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Flg dream

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值