滑模控制理论和应用

1. 概念碎片,综述

滑模控制(Sliding Mode Control,SMC)是一种特殊类型的变结构控制(Variable Structure Control,VSC),因此又称之为滑模变结构控制,是近年来广泛应用和发展的一种控制方法。滑模控制本质上是一种非线性控制,即控制结构随时间变化而变化。滑模变结构控制是非线性系统中普遍采用的一种分析方法,其显著优点是对于不确定参数和外界干扰具有强鲁棒性,因此,在航空航天、机器人控制以及化工控制等领域得到了广泛的应用。
优点:调节的参数少、响应速度快、对扰动不灵敏。
特点:滑模控制本质上是非线性控制的一种,简单的说,它的非线性表现为控制的不连续性,即系统的“结构”不固定,可以在动态过程中根据系统当前的状态有目的地不断变化,迫使系统按照预定“滑动模态”的状态轨迹运动。滑模控制本质上是一种非线性控制,即控制结构随时间变化而变化。滑模变结构控制是非线性系统中普遍采用的一种分析方法,其显著优点是对于不确定参数和外界干扰具有强鲁棒性。
滑膜控制的详细概述请参考该文献(点击跳转)
应用领域:应用领域方面:滑模控制在近十年,应用领域已经不局限于电机伺服系统、机器人、机械臂、不确定系统和时变系统,而且延伸到了航天、船舶、导弹、坦克火控等诸多复杂和强非线性系统。

2. 算法原理

以二阶系统为例子。
微分方程:

ddy+a*y=b0*u+d ··········(1)

其中:d是未知扰动或未建模扰动,外扰动或内扰动。
控制目标:x1=0; x2=0; (跟踪问题,扰动抑制问题则要转化成这种形式的控制目标再进行下一步(滑膜控制器)设计)
若能使得下面式2恒成立则当t趋于无穷大时有x1=0; x2=0 即达到控制目标:

s=c*x1+x2=0 ··········(2)

证明:
在这里插入图片描述
可以看出状态量最终都会趋于零,而且是以指数速度趋近。
s=0称之为滑模面,用相平面来表示这个指数趋近的过程为,沿着箭头的方向移动到原点的这个过程就是设计滑模面要实现的效果:
#pic_center
此时,设计控制率u使得s=0即滑模控制的广义控制目标。
找到s和u的关系:求导
在这里插入图片描述
为了满足s===0,一般dot s一般取下面几种形式:
在这里插入图片描述
dot s 被称为趋近律

总结:
滑模控制的设计步骤。首先根据被控对象的状态方程设计滑模面s=CX,状态一旦到达滑模面,将以指数趋近方式达到稳定状态。然后设计趋近律dot s求出控制器的表达,李雅普诺夫函数作为稳定性的保证,即保证s=0可达,(相平面中的其他点能到达滑模面)。

3.滑模控制设计步骤

一般,滑模变结构控制的设计包含以下两部分内容:
(1)滑模面设计,使得系统的状态轨迹进入滑动模态后具有渐近稳定等良好的动态特性;
具体例子后续补充…
(2)滑模控制律设计,使得系统的状态轨迹在有限时间内被驱使到滑模面上并维持在其上运动。
  滑模控制的设计面临的第一步是滑模面的选择问题,一旦确定了滑模面,也就决定了滑模运动的稳定性与动态品质。线性滑模面的表达式为状态变量或误差项的累加和,或者表达式为状态变量或误差项的微分累加和。线性结构的滑模面能充分满足线性系统控制性能的设计要求,使得系统处于滑动模态时稳定性分析简洁、方便,参数设计也容易,直到目前许多研究仍是基于线性滑模面的。但其局限性在于应用线性滑模面时,系统的状态跟踪误差都不会在有限时间内收敛到零。因此,线性滑模面适用于速度和精度要求不是非常高的非线性系统。
  时变滑模面:无论是线性滑模面还是非线性滑模面,控制系统的初始状态都不可能恰好在滑模面上,因此系统运行都存在趋近阶段和滑模阶段。时变滑模面则可随系统的状态或时间改变而改变,使系统始终运行在滑模状态,从而消除趋近阶段、提高系统的鲁棒性。与智能控制相结合、如何设计时变滑模面是滑模面研究的一个重要内容。
  系统在由滑模面之外进入滑模面的正常运动阶段的品质则由趋近律决定。通过选择不同趋近律,可得到不同的动态品质特性。早期趋近律的形式有等速趋近律、指数趋近律、一般趋近律和幂次趋近律,其中常用的是指数和幂次趋近律。
具体例子后续补充…

补充

趋近阶段:趋近律?
滑膜阶段:

4.具体例子

线性被控对象的滑膜控制例子(点击跳转)
四旋翼滑模控制

5.入门后的理论回顾请参考

理论回顾(点击跳转)

6.参考文献:

【1】https://blog.csdn.net/xiaohejiaoyiya/article/details/90271529
【2】https://blog.csdn.net/xuehuafeiwu123/article/details/53726089
【3】https://blog.csdn.net/qq_36903625/article/details/124062229

7.论文笔记

为何鲁棒性强抗干扰强?
由于滑动模态可以进行设计且与对象参数及扰动无关, 这就使得变结构控制具有快速响应、对参数变化及扰动不灵敏、无需系统在线辩识, 物理实现简单等优点。
抖震的原因:
该方法的缺点在于当状态轨迹到达滑模面后, 难于严格地沿着滑模面向着平衡点滑动, 而是在滑模面两侧来回穿越, 从而产生颤动。

### 关于基于观测器的 PMSM 非奇异终端滑膜控制设计的研究 #### 观测器在永磁同步电机中的应用背景 现代高性能交流伺服控制系统中,永磁同步电机(PMSM)因其高效率、高功率密度以及良好的动态性能而被广泛应用。然而,在实际运行过程中,由于参数变化外部扰动的影响,系统的鲁棒性稳定性面临挑战。为了提高系统的抗干扰能力跟踪精度,引入了各种类型的观测器来估计状态变量并实现有效的反馈控制。 #### 非奇异终端滑模控制器的设计原理 非奇异终端滑模控制是一种特殊的变结构控制策略,它通过调整切换面使得系统能够在有限时间内达到平衡点,并保持稳定运行而不陷入奇异性问题。对于PMSM而言,这种控制方式可以有效抑制不确定因素带来的负面影响,同时保证快速响应平稳过渡特性[^1]。 #### 基于观测器的状态重构技术 针对传统传感器测量存在延迟或噪声污染等问题,采用先进的数学模型构建算法——如扩展卡尔曼滤波(EKF),无迹变换(UKF)等——能够实时准确地获取内部工作状况下的转子位置、速度以及其他难以直接感知的信息。这些数据不仅有助于优化现有控制逻辑,也为后续高级功能开发提供了坚实基础。 #### 综合设计方案概述 结合上述理论框架,具体实施方案如下: - **建立精确的动力学方程**:考虑到电磁耦合作用下定子绕组间复杂的相互关系,利用Park变换将三相静止坐标系转换至两相同步旋转参照系内表示; - **选取合适的观测机制**:依据应用场景需求选择适当种类的观测手段(例如Luenberger Observer),并通过Lyapunov函数证明其渐近收敛性质; - **设定合理的滑模面及其到达律**:定义满足期望轨迹特性的几何形状作为参考路径,并据此推导出相应的趋近条件表达式; - **实施反演法求解最优增益矩阵K**:借助线性二次型调节(LQR)或其他最优化方法确定使整个闭环体系具备良好动静态品质指标的最佳系数向量; - **加入自适应学习环节提升泛化能力**:允许在线微调某些关键参数以应对未知工况变动情况的发生。 ```matlab % MATLAB仿真示例代码片段 function dxdt = pmsm_observer(t,x,params) % 定义输入输出接口... % 计算预测误差e=x_hat-x_real % 更新规则 K*sign(e),其中K为预先计算好的常数阵 end ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值