📋📋📋本文目录如下:⛳️⛳️⛳️
目录
0 论文复现
本文参考以下两篇文献:
1 概述
2014 年 我 国 发 布《国家新型城镇化规划 ( 2014—2020 年) 》,倡导集约、绿色的发展方式,从
而加速了能源供给的多样化和需求侧的多元化。大规模新能源与需求侧资源的接入,要求电力系统的运行在满足可靠性和经济性上有更好的方法。电力系统经济调度( economic dispatch,ED) 问题的目标是实现更合理的电力资源配置和调度。在满足电力负荷实际生产和生活的需要的同时,最大限度地降低发电成本。在调度过程中,还必须满足系统机组之间的功率平衡和运行极限约束等相关条件[1-2]。 从数学建模角度来看,ED 问题可以描述为一 个具有一定约束条件的二次规划问题。多种数学规划方法,如 lambda 迭代法、梯度法和动态规划等常被用来解决此类问题。然而,这些传统方法都不能得到最优解,因为它们都采用局部搜索技术,通常陷入局部最优[3-4]。另一方面,ED 问题具有离散性、高维性、非线性、多约束等特点,使得 ED 问题的求解方法具有很大的局限性。随着人工智能的不断发展以及智能算法在解决复杂非线性问题中的优势,越来越多的研究致力于用智能算法来解决 ED 问题。遗传算法( genetic al-gorithm,GA) [5-7]、粒子群优化( particle swarm opti- mization,PSO) [8-11]、量子行为粒子群优 化 ( quan- tum-behaved particle swarm optimization,QPSO) [12-13] 等智能算法已被应用于 ED 问题的求解。文献[5]提出了一种基于 lambda 的遗传算法来解决 ED 问 题,在大规模系统中,该方法比 lambda 迭代法更快、更稳健。文献[6]提出了一种遗传算法和一种改进的遗传算法来解决 ED 问题,从研究实验中看出,得到的结果比动态规划方法要好。文献[7]通过一种改进的带 multiplier updating 的遗传算法来解决具有阀点效应和多种燃料的 ED 问题。文献[9]提出了一种 PSO 方法来求解电力系统 ED 问题,结果表明,PSO 方法能够获得比 GA 方法更高质量的 ED 问题
解。文献[11]采用了一种动态搜索空间缩减策略来加速 PSO 方法求解 ED 问题的优化进程。文献[12]将 QPSO 算法应用到 ED 问题求解中,在 3 个测试集上得到了优于 PSO 等算法的结果。
2 数学模型
3 多目标量子粒子群优化算法
4 Matlab代码及文章详细讲解
4 Matlab代码实现
回复:基于改进量子粒子群算法的电力系统经济调度