自动驾驶定位概述

自动驾驶车辆定位至关重要,要求精度在10cm以内。常用的定位方法包括GNSS+INS、地图辅助定位,尤其是SLAM技术,如贝叶斯滤波、卡尔曼滤波。扫描匹配如ICP和NDT用于点云配准,提供高精度但依赖高精度地图,且成本和计算需求高。

定位可以归为自动驾驶系统的感知模块,但它又有自己独特的技术特点,因此一般会把定位单独列出来。

自动驾驶车辆行驶的第一步是需要知道自己的位置,在复杂多变的城市环境中,定位位置的精度要求误差不超过10cm,如果偏差过大,在行驶过程中就很容易与道路周边设施发生剐蹭、碰撞。尽管在自动驾驶系统中也会有相应的避障功能辅助安全,但不能保障百分百避障成功。因此在自动驾驶技术的发展过程中,无论是从硬件还是软件层面,定位精度都有很重要的意义。

目前使用最广泛的自动驾驶定位方法包括融合全球定位系统(GNSS,Global Navigation Satellite System)和惯性导航系统(INS,Inertial Navigation System)。其中,GNSS的定位精度由器件成本决定,一般在几十米到几厘米级别之间,精度越高,成本也越贵。融合GNSS和INS的定位方法能够在一定程度上解决GNSS在环境恶劣条件(高楼、树木遮挡,大面积水域、隧道等)下定位精度偏差较大的影响,但对于城市这样大范围定位条件都不好的情况,单纯的GNSS+INS的定位技术还是不够满足自动驾驶的需求。

地图辅助类定位方法是另一种广泛使用的自动驾驶定位技术,代表算法是同步定位与地图构建(SLAm,Simultaneous Localization And mapping)。SLAM的目标是构建地图的同时使用该地图进行定位,SLAM通过传感器(摄像头、Lidar等)观测到的环境特征,确定当前车辆的位置以及当前观测目标的位置,这是一个利用以往的先验概率分布和当前的观测值来估计当前位置的过程,这一过程通常使用的方法有:贝叶斯滤波器(Bayesian Filter)、卡尔曼滤波器(Kalman Filter)、扩展卡尔曼滤波器(Extend Kalman Filter)、粒子滤波器(Partical Filter)等,这些都是基于概率和统计原理的定位技术。

SLAM是机器人定位领域的研究热点,在特定场景下的低速自动驾驶定位的应用过程中也有较多现实的实例,如园区无人摆渡车、无人清洁扫地车、扫地机器人等,都广泛采用了SLAM技术。实际上,在此类特殊场景中,用户并不是在定位的同时实时建图,而是事先使用传感器(如激光雷达、摄像头等)对车辆运行环境区进行SLA

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值