一作解读 | aBIOTECH综述-原创算法驱动多倍体小麦复杂基因组解析

近日,中国农业大学小麦研究中心在aBIOTECH在线发表了题为“Innovative computational tools provide new insights into the polyploid wheat genome”的综述文章。该综述系统介绍了小麦复杂基因组解析的原创性算法和工具的设计及相关应用,围绕小麦种质资源基因组解析以及功能基因发掘两个重要科学问题,详细阐述了近年来开发的基因组学创新工具和相关数据库的应用场景,并展望了未来作物基因组学方法创新的研究方向。

510a09a9fb7b917e943aec81675f3987.png

1、小麦基因组的复杂性和特点

该综述首先介绍了在多倍体小麦的基因组学解析和功能基因组学研究方面存在的特殊挑战(图1)。异源六倍体小麦起源自新月沃土,经历了两次多倍化事件,其基因组庞大(~16 Gb),约为玉米的6倍、水稻的40倍。因而对小麦进行基因组学数据分析的计算复杂度显著增加。完成同等覆盖度的全基因组测序数据的比对,小麦所需要计算成本约为水稻的470倍、玉米的21倍。由于多倍体小麦的亚基因组显性效应、剂量效应和功能冗余等特点,对小麦进行农艺性状的遗传基础解析更加困难。同时,小麦在演化过程中频繁发生的种内和种间基因组渗入、染色体易位事件也极大增加了基因组多样性。尽管已公开发表的小麦族物种基因组组装和多组学数据资源逐年增加,但数据量大、组装和注释质量不一致性等因素为比较基因组学等分析研究带来了挑战。此外,小麦重要农艺性状的调控机制研究仍然进展缓慢。目前小麦中功能已知基因的数量不足全基因组注释基因数量的1%,远低于水稻和拟南芥等物种中功能已知基因的数量。因而,小麦基因组学研究亟需从底层算法和数据整合利用方面进行创新。

a0cbfbd785f0475a3e1bf2ecd4f0035b.png

图1. 小麦复杂基因组解析面临的挑战

2、小麦基因组学分析工具研究进展

针对小麦复杂基因组解析这一重要科学问题,中国农业大学小麦研究中心近年来开发了一系列创新方法和计算工具,并搭建了多个小麦基因组学数据库,在小麦基因组演化、遗传变异解析和基因调控解析等方面取得了一系列研究进展(图2)。在种质资源的基因组学基础解析方向,开发了SnpHub框架以实现在网页浏览器进行变异组大数据的分析和可视化,降低了大规模基因组变异数据的利用难度;开发了IntroBlocker和ggComp两个计算工具,分别从演化驯化和育种改良两个时间尺度实现了对小麦种质材料祖源单倍型(AHG)和种质资源单倍型(gHap)的层次化解析。在泛基因组方向,开发了泛基因组水平的同源基因推断工具GeneTribe,并建立了包含约80个小麦族物种基因组的同源基因数据库Triticeae-GeneTribe(TGT),实现了小麦族基因组组装在同源基因水平上的“连接”。此外,发现小麦基因组中约1%的基因来自于细胞器基因向核基因组转移(NOG),并开发了NOG的鉴定工具IGTminer,同时建立禾本科作物细胞器基因向核转移图谱(pNOGmap),系统绘制了禾本科物种NOG的演化轨迹,进一步拓展了关于小麦基因组复杂结构来源的认识。在基因调控解析方面,建立了包含约720万对调控关系的小麦整合基因调控网络平台wGRN,并提供了候选基因挖掘、基因功能解析和调控网络检索等工具,极大提升了小麦复杂农艺性状解析及新基因发掘的效率。

49608b8581ec2bad7db4f8a60ecaaf85.png

2. 小麦基因组学计算工具的设计策略与应用

随后文章针对“种质资源遗传基础解析”与“功能基因发掘和调控关系解析”两类主要的应用场景,围绕如何利用这些现有的计算工具和基因组学数据库进行分析研究进行了逐步示例说明。相关详细使用方法可见在线网页:http://wheat.cau.edu.cn/resources/tutorial.html。

3、基因组学工具使用指南(一):解析小麦优异品种的遗传基础

从基因组水平解析优异品种的遗传构成及育种中的基因选择利用规律,对于总结育种经验、探究重要农艺性状的遗传基础具有重要意义。文章以小麦优异骨干品种矮抗58为例,展示了如何利用基因组学工具辅助解析小麦品种的基因组遗传构成、结构变异及重要基因/位点单倍型的育种利用规律(图3)。基于重测序数据,结合WheatCNVb数据库、ggComp、IntroBlocker等工具从CNV(图3C)、单倍型(图3D)等多个维度解析了矮抗58对于其系谱中的骨干亲本材料(周8425B和温麦6号,图3A)在基因组精细区间的继承与组合(图3F)。单倍型分析表明,两个骨干亲本在3B和6A两条染色体上存在着跨着丝粒区的祖源单倍型(centAHG)差异,而矮抗58在两条染色体上均选择了我国小麦育成品种中的主流centAHG类型。利用WheatOmics数据库整理的已知基因列表(图3G)并结合SnpHub工具,发现ZIM-A1基因在两个骨干亲本间存在基因型差异(图3H)。通过对小麦不同演化时期的等位变异频率比较分析(图3I)及单倍型网络分析(图3J),发现该基因在矮抗58中的单倍型在驯化与品种选育阶段均受到了选择压力,证明矮抗58在ZIM-A1基因的单倍型选择上顺应了小麦改良趋势。

05c50735cf68567cea0449ad3cd7395e.png

3. 小麦优异种质的遗传基础解析示例

4、基因组学工具使用指南(二):功能基因发掘和调控关系解析

我们以抗旱基因发掘为例,展示了如何利用多种基因组学工具和数据库辅助小麦功能基因发掘及调控关系解析(图4)。首先收集已发表的旱胁迫适应相关QTL,并结合wGRN数据库的QTGminer工具和TGT数据库的基因注释工具对抗旱候选基因进行优先排序,筛选到得分较高的两个候选基因TaNAC071-ATaWRKY51-1B(图4A)。随后利用wGRN数据库的基因功能预测(图4B)和部分同源基因表达模式分析工具(图4D)及WheatOmics数据库的基因表达分析功能(图4C)进一步印证两个候选基因可能参与旱胁迫响应。进一步利用TGT数据库的GO富集分析工具(图4E)、wGRN数据库的转录调控因子预测工具(图4E和4F),并结合小麦籽粒翻译组浏览器(图4G)建立了这两个转录因子所参与的旱胁迫响应相关调控网络,揭示了两基因在旱胁迫响应通路中的重要作用。利用TGT数据库的共线性分析工具(图4H),发现两个基因在小麦族物种中高度保守。结合SnpHub数据库的等位变异频率分析(图4I),发现两基因在小麦的演化过程中均受到了选择。

8996d46fe6adadefd395454eaaead678.png

4. 小麦功能基因发掘和调控关系解析示例

5、未来作物复杂基因组学工具开发的展望

最后,面对持续积累和不断丰富的多维基因组学数据,该综述围绕复杂作物小麦在基因组变异、基因演化、基因调控、多倍体可塑性、设计育种等方面,展望了今后基因组学创新算法、工具和数据库开发的研究方向(图5)。未来,作物基因组学大数据的集成并结合生物信息学方法的创新,有望为小麦等重要作物的功能基因发掘和基因组设计育种带来新的机遇。

32cb626b9b6fdc9bac1ad464503a71de.png

5. 小麦基因组学分析工具创新设计的展望

中国农业大学农学院小麦研究中心的郭伟龙副教授为该论文的通讯作者,博士后陈永明和博士生王文熙为第一作者,孙其信教授、倪中福教授、彭惠茹教授对该工作进行了指导和帮助,博士生杨正钊参与了部分工作。该工作得到了国家自然科学基金、中国博士后科学基金、分子设计育种前沿科学中心、拼多多-中国农业大学研究基金、中国农业大学“2115人才培育计划”的资助。

原文链接:https://doi.org/10.1007/s42994-023-00131-7

文中示例的应用流程:http://wheat.cau.edu.cn/resources/tutorial.html

文中数据库和工具:

16f4ea7a4890093d456c6f05ffa15510.png

宏基因组推荐

猜你喜欢

iMeta高引文章 fastp 复杂热图 ggtree 绘图imageGP 网络iNAP
iMeta网页工具 代谢组MetOrigin 美吉云乳酸化预测DeepKla
iMeta综述 肠菌菌群 植物菌群 口腔菌群 蛋白质结构预测

10000+:菌群分析 宝宝与猫狗 梅毒狂想曲 提DNA发Nature

系列教程:微生物组入门 Biostar 微生物组  宏基因组

专业技能:学术图表 高分文章 生信宝典 不可或缺的人

一文读懂:宏基因组 寄生虫益处 进化树 必备技能:提问 搜索  Endnote

扩增子分析:图表解读 分析流程 统计绘图

16S功能预测   PICRUSt  FAPROTAX  Bugbase Tax4Fun

生物科普:  肠道细菌 人体上的生命 生命大跃进  细胞暗战 人体奥秘  

写在后面

为鼓励读者交流快速解决科研困难,我们建立了“宏基因组”讨论群,己有国内外6000+ 科研人员加入。请添加主编微信meta-genomics带你入群,务必备注“姓名-单位-研究方向-职称/年级”。高级职称请注明身份,另有海内外微生物PI群供大佬合作交流。技术问题寻求帮助,首先阅读《如何优雅的提问》学习解决问题思路,仍未解决群内讨论,问题不私聊,帮助同行。

点击阅读原文,跳转最新文章目录阅读

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值