Nature Microbiology | 代谢模型预测短链脂肪酸产生谱

e842ca36b644057ce566d8b58c3c7721.png

翻译转载自公众号"肠道菌群探秘"

这篇文章是发表在《Nature Microbiology》上的一项研究,标题为“Microbial community-scale metabolic modelling predicts personalized short-chain fatty acid production profiles in the human gut”。文章的主要内容包括:

  1. 研究背景:人体肠道中的微生物群落产生的短链脂肪酸(SCFAs)与宿主的代谢、免疫调节和肠道上皮的完整性紧密相关。尽管人们摄入相同的饮食,不同个体之间SCFAs的产生量差异很大,且较低水平的SCFAs通常与疾病相关。

  2. 研究目的:由于缺乏对这种异质性的系统级机理理解,本研究使用微生物群落规模的代谢模型(MCMM)来预测个体特定的SCFA产生谱,并评估不同饮食、益生元和益生菌输入的影响。

  3. 研究方法:研究者使用MCMM方法,结合体外和体外数据以及已发布的人类队列数据,评估MCMMs的定量准确性。研究者还探讨了MCMMs预测的SCFA与血液生化指标的关联性,这些生化指标包括心血管代谢和免疫健康标志物。

  4. 研究结果:

  • MCMMs能够预测体外合成的肠道微生物群落的丁酸产生率。

  • MCMMs能够捕捉到来自不同个体的粪便样本在体外培养过程中的SCFA产生率。

  • MCMMs预测的SCFA产生与大型人类队列中的血液生化指标显著相关。

  • 研究者展示了如何利用MCMMs设计个性化的饮食、益生元和益生菌干预措施,以优化肠道中的SCFA产生。

结论:该模型代表了一种直接工程化肠道微生物组以实现精准健康和营养的方法。

研究意义:这项研究提供了一种新的方法,通过计算系统生物学来预测个体对各种干预或扰动的微生物群落特异性反应,有助于精准营养和个性化医疗的发展。

背景介绍

  1. 肠道微生物群落的重要性:人体肠道中的微生物群落(肠道微生物组)执行多种功能,包括维持肠道屏障功能、调节全身性炎症以及分解不可消化的饮食成分和宿主底物,生成大量生物活性化合物。

  2. 短链脂肪酸(SCFAs)的作用:SCFAs是肠道微生物群落产生的最丰富的代谢副产品之一,主要通过发酵不可消化的饮食纤维和抗性淀粉产生。SCFAs中的乙酸盐、丙酸盐和丁酸盐是最主要的成分。SCFAs的产生与宿主健康紧密相关,其缺乏与多种疾病有关,如炎症性肠病和结直肠癌。

  3. 个体差异:尽管摄入相同的饮食,不同个体之间SCFAs的产生量差异很大。这种差异通常与疾病状态相关,例如,丁酸和丙酸的缺乏与疾病有关。

  4. 系统级理解的缺乏:尽管已有研究,但目前对于为什么不同个体在摄入相同饮食的情况下SCFAs产生量存在差异的系统级机理理解还很缺乏。

  5. 研究目标:文章提出了使用微生物群落规模的代谢模型(MCMM)来预测个体特定的SCFA产生谱,并评估不同饮食、益生元和益生菌输入的影响,以填补现有知识空白。

  6. 研究的潜在应用:通过构建和评估MCMMs,研究旨在为设计个性化的饮食、益生元和益生菌干预措施提供科学依据,这些干预措施旨在优化肠道中的SCFA产生,从而可能改善宿主的健康。

研究结果

  1. 体外模型验证(In vitro model validation):研究者首先使用合成的肠道细菌群落(synthetically constructed communities)的数据来评估MCMM(微生物群落规模代谢模型)预测的准确性。这些数据包括了相对微生物丰度、终点时的丁酸浓度和每个独立共培养的总光学密度。

  2. MCMMs预测丁酸产生率:通过比较模型预测的丁酸通量与实际测量的丁酸产生率,研究者发现在不同丰度的群落中,模型预测与实际测量之间存在显著的相关性,尤其是在丰度较高的群落中,预测更为准确。

  3. 体外与体外模型的比较(Ex vivo model comparison):研究者还将MCMM预测与人体粪便样本的体外培养结果进行了比较。这些样本来自少数个体,在添加了不同的膳食纤维后进行培养。结果显示,模型预测的丁酸和丙酸产生率与实际测量值之间存在一致性,但对于乙酸的预测准确性则较低。

  4. 个体间和个体内异质性的考虑:研究者讨论了如何通过MCMMs来考虑个体间和个体内SCFA产生的差异性,这是微生物组领域的一个重要挑战。

  5. 临床化学指标的关联性:研究者发现,MCMM预测的SCFA产生与大型人类队列中的血液生化指标存在显著关联,这些指标包括心血管代谢和免疫健康标志物。

  6. 个性化干预措施的设计:研究者展示了如何利用MCMMs来设计个性化的饮食、益生元和益生菌干预措施,以优化肠道中的SCFA产生,并讨论了这些干预措施的潜在效果。

  7. 模型的临床意义:研究者评估了MCMMs预测的SCFA产生与血液生化指标之间的关联性,并讨论了这些预测对于精准医疗和营养的潜在重要性。

  8. 模型的局限性和未来应用:最后,研究者讨论了MCMMs的局限性,包括数据库的可用性和模型的准确性,并展望了随着知识库和方法的改进,MCMMs预测准确性的提高以及在精准营养和个性化医疗中的潜在应用。

08055f39ab0256028ecc44632e824d42.png

4db5e0a312a6c19cd812fbe663777a68.png

MCMMs 在体外捕获丁酸产生率

这一部分主要描述了研究者如何使用微生物群落规模代谢模型(MCMMs)来预测并验证体外实验中丁酸(一种短链脂肪酸)的产生率。具体内容包括:

  1. 实验数据来源:研究者使用了一组从人体肠道中分离出来的细菌共生体合成构建的社区的已发布数据。这些数据包括了1,579个独立共培养的终点相对微生物丰度测量、终点丁酸浓度测量和每个培养的总光学密度。

  2. MCMMs构建:为每个共培养构建了MCMMs,模拟了每个模型中定义介质中的生长,这些介质映射到与体外实验中使用的介质成分相匹配的代谢成分数据库。

  3. 模型预测与实际测量的比较:模型预测的丁酸通量与实际测量的丁酸产生率进行了比较。这里,丁酸产生率是通过将终点时的丁酸浓度除以培养时间来计算的,并假设在生长开始时没有丁酸,然后使用600 nm处的光学密度对总生物量进行归一化。

  4. 预测准确性:研究发现,模型预测的丁酸产生通量与实际测量的丁酸产生通量在所有社区中显著相关,相关性在丰度较高的群落中更强。

  5. 低丰度与高丰度群落的比较:研究者将结果按低丰度(1-5个属,N=882)和高丰度(10-25个属,N=697)社区进行了分层,并发现在高丰度社区中,模型的预测更为准确。

  6. 相关性分析:使用皮尔逊相关性分析(Pearson’s correlation)来评估模型预测与实际测量值之间的关联性,并给出了相关系数(r值)和P值来衡量统计显著性。

722d57943db8f7942ae20da5b5be760c.png

MCMMs 捕获来自体外社群的 SCFA 产生率

这一部分主要讨论了以下几点内容:

  1. 体外验证:研究者将微生物群落规模代谢模型(MCMMs)的预测与人体粪便样本的体外培养结果进行了比较。这些样本来自少数个体,并且在添加了不同的膳食纤维后进行了培养。

  2. 实验设计:描述了四个独立的研究,每个研究都使用了不同的培养条件和时间,包括不同的稀释比例和培养时间。

  3. 模型构建:使用来自这些体外培养的样本的宏基因组(metagenomic)或16S扩增子测序数据来构建MCMMs。这些模型使用相对丰度作为每个细菌分类单元相对生物量的代理。

  4. 模型模拟:MCMMs使用标准化的欧洲饮食进行模拟,有或没有特定的纤维补充,以匹配实验处理。

  5. 预测与实际测量的比较:将MCMMs预测的SCFA(短链脂肪酸)产生率与体外实验中实际测量的SCFA产生率进行了比较。

  6. 预测准确性:观察到模型预测的丁酸和丙酸产生率与实际测量值之间存在一致性,但对于乙酸的预测准确性较低。

  7. 个体差异:研究者发现,尽管模型在预测个体间的SCFA产生差异方面存在挑战,但通过考虑样本多样性和培养稀释度等因素,可以提高预测的准确性。

  8. 模型优化:讨论了如何通过调整模型,例如考虑培养稀释度,来提高模型预测SCFA产生的准确性。

57b40fea11b5bebbc04566f7e0819481.png

5e867abbf39620b1ccb02be10bbdb785.png

55a91df2ce54ac9989b91c0ebb665a14.png

预测高纤维干预对免疫反应的影响

这一部分主要讨论了以下内容:

  1. 研究目的:探索使用微生物群落规模代谢模型(MCMMs)预测不同个体在接受高纤维饮食干预后的免疫反应差异。

  2. 研究设计:研究者分析了18名参与者在进行为期10周的高纤维饮食干预过程中的免疫反应数据。这些参与者根据血液中的炎症细胞因子和免疫细胞的免疫分析被分为三个不同的免疫反应组:高炎症组和两个低炎症组。

  3. 模型构建:使用16S rRNA扩增子测序数据,为每位参与者在10周干预期间的7个时间点构建了MCMMs。然后,使用富含抗性淀粉的标准化高纤维饮食来模拟每个模型的生长。

  4. 预测与实际测量的比较:研究者比较了模型预测的SCFA(特别是丁酸和丙酸)产生率与参与者实际的免疫反应之间的关系。

  5. 主要发现:

  • 在高炎症组的个体中,随着干预的进行,预测的丙酸产生呈下降趋势,尽管参与者摄入了高纤维的饮食。

  • 高炎症组的个体平均预测的丙酸产生率显著低于两个低炎症组的个体。

丁酸的作用:尽管丁酸与炎症反应的关系被广泛研究,但在这项研究中,丁酸的预测产生率在不同的免疫反应组之间没有显著差异。

样本多样性分析:研究者还探讨了样本的α-多样性(即物种丰富度)是否足以解释免疫反应组之间的差异,并发现在整个研究期间,除了一个时间点外,α-多样性并没有显著差异。

结论:MCMMs能够预测高纤维饮食干预后的免疫反应,特别是通过预测丙酸的产生率来帮助解释个体间的免疫反应差异。

6f64d844bd0c069baa8e18d35a6ed3dc.png

b7f456966da424b09ac4cdc10acb55cc.png

将预测与基于血液的生物标志物相关联

这一部分主要讨论了以下几个方面:

  1. 研究目的:评估个性化微生物群落规模代谢模型(MCMMs)预测的短链脂肪酸(SCFA)产生率与血液生物标志物之间的相关性,以验证模型的临床相关性。

  2. 研究设计:使用来自美国西海岸的一般健康人群(Arivale队列)的3,129名个体的数据,基于他们的粪便16S rRNA扩增子测序数据构建了MCMMs,并预测了在标准欧洲饮食下的SCFA产生率。

  3. 数据分析:将MCMMs预测的SCFA通量与128项血液临床化学指标和血压数据进行回归分析,同时调整了年龄和性别等协变量。

  4. 主要发现:

  • 预测的丁酸产生率与血液样本中的多种健康标志物显著相关,包括与健康相关的激素脂联素(adiponectin)以及与疾病相关的C反应蛋白(C-reactive protein)、低密度脂蛋白(LDL cholesterol)和平均动脉血压等。

  • 预测的丁酸产生率与体重指数(BMI)显著负相关,而与血液中实际测量的丁酸水平没有显著相关性,这表明血液中的丁酸测量可能不是体内产生情况的良好指标。

模型验证:通过将预测结果与血液中测量的丁酸水平进行比较,发现两者之间存在弱但显著的正相关性,进一步验证了MCMMs的预测能力。

临床意义:这些结果强调了预测肠道微生物群落产生的SCFA而不是仅仅测量血液中的SCFA浓度的重要性,因为SCFA在肠道内被迅速消耗和处理。

结论:通过将MCMMs预测的SCFA产生率与血液生物标志物相关联,研究者展示了MCMMs在精准营养和个性化医疗中的潜在应用价值。

6289dee5f7afca69354bbcd852beb9ef.png

8be5c67c81de204c6a0e042f844df08f.png

利用微生物群落规模代谢模型设计精准干预措施

这一部分主要讨论了以下内容:

  1. 研究目的:利用微生物群落规模代谢模型(MCMMs)作为工具,来设计和选择针对个体的精准干预措施,目的是优化肠道微生物群落产生的短链脂肪酸(SCFA)的剖面。

  2. 个性化营养干预:研究者展示了如何使用MCMMs来筛选和设计针对Arivale队列个体的潜在干预措施,这些干预旨在增加SCFA的产生。

  3. 饮食背景:MCMMs在两种不同的饮食背景下构建:一种是平均欧洲饮食,另一种是富含抗性淀粉的素食高纤维饮食。

  4. 模型预测:模型预测显示,在高纤维饮食下,平均预测的丁酸产生率显著高于欧洲饮食。

  5. 个体反应差异:研究者发现,不同个体在高纤维饮食下的丁酸产生增加并不一致。有些个体的丁酸产生显著增加,有些几乎没有变化,而少数样本实际上丁酸产生有所下降。

  6. 非响应者和退步者:研究者识别出了一组“非响应者”和“退步者”,这些个体在高纤维饮食下的丁酸产生增加不到20%,或者与欧洲饮食相比有所减少。

  7. 预生物和益生菌干预:研究者模拟了在欧洲饮食或高纤维饮食背景下,通过添加益生元(如菊粉和果胶)或益生菌(如产丁酸的属Faecalibacterium)的简单干预,以确定每个个体的最佳组合干预。

  8. 干预效果:通常,组合干预显著提高了群体水平的丁酸产生,远超过单一饮食干预的效果。

  9. 个体化干预:对于非响应者和退步者群体中的15名个体中的16名,通过特定益生元或益生菌补充背景饮食,增加了丁酸产生率。最佳干预在标准欧洲饮食基础上显示出显著增加。

  10. 结论:研究者强调,没有单一的组合干预适用于整个人群,每个个体对每种组合干预的反应都不同。

bc0bbfaabbf78968b9078406ab29a0cd.png

讨论

  1. 模型验证:作者讨论了在体外实验中模型预测丁酸产生准确性较低的问题,特别是在低丰度群落中。这可能反映了使用数据库衍生的基因组规模代谢模型(GEMs)构建模型的局限性,因为这些模型可能不完全符合样本中特定菌株的代谢能力。

  2. 模型准确性:随着群落多样性的增加,模型预测的准确性提高,这可能是因为在更多样化的群落中,不同生物体之间的功能冗余可以掩盖任何单一分类单元模型的不准确性。

  3. 体外与体外模型的比较:在体外实验中,模型对丁酸和丙酸通量的预测准确性高于乙酸,乙酸作为溢出代谢产物,其通量范围更广,因此预测准确性较低。

  4. 培养稀释度的影响:体外粪便培养的稀释度对结果有显著影响,稀释度的调整可以改善模型预测的准确性。

  5. 临床相关性:作者强调了MCMMs预测的丁酸产生与宿主生理反应之间的关联,包括降低炎症和改善心血管代谢健康。

  6. 个性化营养干预:文章讨论了如何使用MCMMs为个体设计个性化的营养干预措施,特别是对于那些在从标准欧洲饮食转换到高纤维素食饮食时未能增加丁酸产生的个体。

  7. 模型的局限性和未来改进:作者指出了模型的一些局限性,包括高质量通量数据集的可用性有限、GEMs的准确性、16S扩增子测序数据的分类限制,以及缺乏个体特定饮食约束对预测准确性的影响。

  8. 模型的潜在应用:尽管存在局限性,但MCMMs能够解释丁酸和丙酸产生的25-35%的变异性,并且随着数据库和方法的改进,这些模型的准确性预计将会提高。

  9. 结论:文章最后总结了MCMMs在精准营养和个性化医疗中的潜力,以及它们如何帮助将肠道微生物群落的生态组成转化为对特定干预的个体定代谢输出。

宏基因组推荐

本公众号现全面开放投稿,希望文章作者讲出自己的科研故事,分享论文的精华与亮点。投稿请联系小编(微信号:yongxinliu 或 meta-genomics)

猜你喜欢

iMeta高引文章 fastp 复杂热图 ggtree 绘图imageGP 网络iNAP
iMeta网页工具 代谢组MetOrigin 美吉云乳酸化预测DeepKla
iMeta综述 肠菌菌群 植物菌群 口腔菌群 蛋白质结构预测

10000+:菌群分析 宝宝与猫狗 梅毒狂想曲 提DNA发Nature

系列教程:微生物组入门 Biostar 微生物组  宏基因组

专业技能:学术图表 高分文章 生信宝典 不可或缺的人

一文读懂:宏基因组 寄生虫益处 进化树 必备技能:提问 搜索  Endnote

扩增子分析:图表解读 分析流程 统计绘图

16S功能预测   PICRUSt  FAPROTAX  Bugbase Tax4Fun

生物科普:  肠道细菌 人体上的生命 生命大跃进  细胞暗战 人体奥秘  

写在后面

为鼓励读者交流快速解决科研困难,我们建立了“宏基因组”讨论群,己有国内外6000+ 科研人员加入。请添加主编微信meta-genomics带你入群,务必备注“姓名-单位-研究方向-职称/年级”。高级职称请注明身份,另有海内外微生物PI群供大佬合作交流。技术问题寻求帮助,首先阅读《如何优雅的提问》学习解决问题思路,仍未解决群内讨论,问题不私聊,帮助同行。

点击阅读原文,跳转最新文章目录阅读

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值