MicrobiomeStatPlot | 散点图教程Scatter plot tutorial

cc1ed5db213228daa9672edd6c082f8e.png

散点图简介

散点图(Scatter Plot) 是一种统计图形,用于展示两个变量之间的关系。它通过二维坐标系中的点来表示观察数据,每个点的位置由两个变量的取值决定,横坐标表示自变量(X 轴),纵坐标表示因变量(Y 轴)。散点图的应用:相关性分析,判断两个变量之间是否存在某种关联,以及这种关联是正相关、负相关还是无关。模型拟合,通过观察散点图,可以选择合适的回归模型(如线性回归、非线性回归等)来拟合数据。异常检测,可以通过观察散点图中的异常点来检测潜在的异常数据或错误观测值。

标签:#微生物组数据分析  #MicrobiomeStatPlot  #散点图  #R语言可视化 #Scatter plot

作者:First draft(初稿):Defeng Bai(白德凤);Proofreading(校对):Ma Chuang(马闯) and Jiani Xun(荀佳妮);Text tutorial(文字教程):Defeng Bai(白德凤)

源代码及测试数据链接:

https://github.com/YongxinLiu/MicrobiomeStatPlot/项目中目录 3.Visualization_and_interpretation/ScatterPlot

或公众号后台回复“MicrobiomeStatPlot”领取

散点图应用案例1

这是Patrick Lehodey在2020年发表于Biogeosciences上的文章,第一作者为Audrey Delpech,题目为:Influence of oceanic conditions in the energy transfer efficiency estimation of a micronekton model. https://bg.copernicus.org/articles/17/833/2020/

6979bc6438280e3877adbb210875f292.png

图 5 | 显示了在平面 (a) (𝒯,𝒱)和(b)(𝒯,𝒮)上基于核密度估计的散点图及边缘分布,分别对应表3中实验3a、3b、3c 和 3d 的配置。

绿色圆点代表微生物,六边形代表目标基因(调整后的Benjamini-Hochberg P < .05),六边形内的黑色三角形代表每个基因所涉及的免疫功能。边的颜色表示微生物节点和基因节点的Spearman相关性。BCR表示B细胞受体;TCR表示T细胞受体。

结果

图 5 显示,每种配置的次要变量分布都非常接近,足以进行实验比较,避免了任何交叉相关的风险。

散点图应用案例2

这是Masahira Hattori 在2022年发表于NC上的文章,第一作者为Suguru Nishijima,题目为:Extensive gut virome variation and its associations with host and environmental factors in a population-level cohort https://doi.org/10.1038/s41467-022-32832-W

b475787371674a653953e9f37bd88726.jpeg

图 2 | 从 4198 个人类肠道元基因组中重建的噬菌体基因组概览

从 4198 个全元基因组数据集中重建的噬菌体基因组(n = 4709)的基因组大小和 GC 含量。顶部和右侧的柱状图分别描述了基因组大小和 GC 含量的分布情况。

结果

对序列相似度大于 95% 的 4709条噬菌体序列进行聚类,生成了1347个病毒操作分类单元(vOTUs)(相当于物种水平)(图 1a 和补充图 2a,补充数据 4)。

散点图应用案例3

这是Damian R. plichta 在2023年发表于Nature Microbiology上的文章,第一作者为Joachim Johansen ,题目为:Centenarians have a diverse gut virome with the potential to modulate metabolism and promote healthy lifespan https://www.nature.com/articles/s41467-024-45793-z

c41398a48ca44c57e90921f21ecf46de.jpeg

图 3 | 噬菌体特征与独特的百岁老人细菌群落相关群落相关。

一些富集的温和 vOTUs 的 PtW 丰度(log10 标度)与 MSP 宿主丰度呈相关趋势,如 E. boltea vOTUs 丰度的 Spearman 等级相关性为 0.51(P = 4.82 × 10-66)、C. scindens(P = 4.49 × 10-08)和 P. distasonis(P = 6.00 × 10-11)。

结果

推测这一趋势可能反映了病毒细菌宿主的丰度。因此,我们将预测的温带病毒的病毒特征与其预测的宿主相关联。预测的温带病毒的病毒特征与其预测的宿主相关联。发现C.scindens等过量细菌的特征与相关病毒有显著相关性(Cor = 0.30, P = 4.49 × 10-08)。在 Akkermansia muciniphila中也发现了类似的趋势(Cor = 0.25、 P=6.23×10-11)、Enterocloster bolteae(Cor=0.51,P=4.82×10-66)和 Parabacteroides distasonis(Cor = 0.35,P = 6.00 × 10-11)(图 3d)。

散点图R语言实战

源代码及测试数据链接:

https://github.com/YongxinLiu/MicrobiomeStatPlot/

或公众号后台回复“MicrobiomeStatPlot”领取

软件包安装

# 基于CRAN安装R包,检测没有则安装
p_list = c("ggplot2", "ggpubr", "ggpmisc", "doBy", "FactoMineR", "factoextra", 
           "tidyverse", "ggExtra", "vegan", "cowplot", "MASS", "scales","showtext","grid")
for(p in p_list){if (!requireNamespace(p)){install.packages(p)}
    library(p, character.only = TRUE, quietly = TRUE, warn.conflicts = FALSE)}


# 加载R包 Load the package
suppressWarnings(suppressMessages(library(ggplot2)))
suppressWarnings(suppressMessages(library(ggpubr)))
suppressWarnings(suppressMessages(library(ggpmisc)))
suppressWarnings(suppressMessages(library(doBy)))
suppressWarnings(suppressMessages(library(FactoMineR)))
suppressWarnings(suppressMessages(library(factoextra)))
suppressWarnings(suppressMessages(library(tidyverse)))
suppressWarnings(suppressMessages(library(ggExtra)))
suppressWarnings(suppressMessages(library(vegan)))
suppressWarnings(suppressMessages(library(cowplot)))
suppressWarnings(suppressMessages(library(MASS)))
suppressWarnings(suppressMessages(library(scales)))
suppressWarnings(suppressMessages(library(showtext)))
suppressWarnings(suppressMessages(library(grid)))

实战1

散点图加拟合线

# 读取数据
# Load data
Scatterplot <- read.table("data/figure1e.txt", header = TRUE, sep = "\t", comment.char = "")
colnames(Scatterplot) <- c("PROGENY", "KEGG")


# 散点图
# Plot
p1 <- ggplot(Scatterplot, aes(x = PROGENY, y = KEGG)) +
  geom_point(size = 3.5, color = "#1F78B4") +  
  geom_smooth(method = "lm", color = "#E31A1C", size = 1.3, linetype = "dashed") + 
  stat_cor(method = "pearson",
           label.sep = '\n',
           p.accuracy = 0.001,
           r.digits = 3,
           label.x = 9.2,
           size = 5, color = "darkred") +
  scale_x_continuous(limits = c(8.9, 10.6), expand = c(0, 0)) +
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值