D触发器和16进制计数器设计Verilog代码Quartus仿真

名称:D触发器和16进制计数器设计Verilog代码Quartus仿真(文末获取)

软件:Quartus

语言:Verilog

代码功能:

1.设计 VERILOG HDL语言程序并实现带有异步清零( Asynchronouseset)和置位( Asynchronous setting)的D触发器

2.设计 VERILOG HDL语言程序井实现带有异步复位的同步16进制加法

计数器( Synchronous hexadecimal addition counter)

3,对程序进行仿真

4.连接电路验证设计的正确性

 

D触发器和16进制计数器.jpg

   

1、工程文件

2、程序文件

3、程序编译

4、RTL图

5、仿真图

1、工程文件

2、程序文件

3、程序编译

4、RTL图

5、仿真图

部分代码展示:

//异步复位的同步16进制加法计数器
module cnt(
input CLK,//时钟
input RST,//异步复位
input EN,//使能
output A,B,C,D //4位输出
);
reg [3:0] count;
always@(posedge CLK or negedge RST)
if(!RST)
count<=4'd0;//异步复位
else if(EN)//高电平使能
count<=count+4'd1;//自加
assign A=count[0];//计数器第0位
assign B=count[1];//计数器第1位
assign C=count[2];//计数器第2位
源代码

点击下方的公众号卡片获取

<think>好的,用户想设计一个基于D触发器的模10计数器。首先,我需要回忆一下模计数器的基本原理。模10计数器意味着每输入10个时钟脉冲,计数器就循环一次,输出从0到9的十进制数。使用D触发器的话,通常需要多个触发器级联,每个触发器的输出作为下一个触发器的输入,或者通过组合逻辑反馈来控制状态。 首先,确定需要多少个D触发器。因为2^3=8,而模10需要至少4个状态,所以需要4个触发器,因为2^4=16,足够覆盖0到9这10个状态。不过,模10计数器需要精确到10个状态后复位,所以可能需要更多的逻辑控制。 接下来,状态图的设计。模10计数器加法计数器,所以每个时钟脉冲到来时,计数器加1,直到9之后回到0。需要画出状态转移表,列出当前状态下一个状态的关系。例如,当前状态是0000,下一个状态是0001,依此类推,直到1001(9)后回到0000。 然后,根据状态转移表,确定每个D触发器的输入D。因为D触发器的下一个状态Q(n+1)等于当前的输入D,所以需要根据当前状态推导出每个D的表达式。这通常需要用到卡诺图来化简逻辑表达式,以得到最简单的组合逻辑电路。 还需要考虑进位的问题。例如,当最低位触发器在每个时钟脉冲翻转,而高位触发器则在其前一位产生进位时翻转。不过D触发器设计可能不同,需要根据时钟的连接方式来确定。比如,同步计数器所有触发器共用同一个时钟,而异步计数器则可能使用前一级的输出作为下一级的时钟,但用户提到的是D触发器,所以可能是同步设计。 然后,设计反馈逻辑。当计数到1001(9)时,下一个时钟脉冲需要让所有触发器复位到0000。这可能需要一个检测电路,当Q3Q2Q1Q0=1001时,产生一个复位信号,或者通过组合逻辑将各触发器的输入D设置为0,同时可能需要异步复位端或者同步控制。 另外,需要确保无效状态(1010到1111)能够自动回到有效循环中。如果使用自校正设计,这些状态在几个时钟周期后会回到有效序列,否则可能造成死循环。 参考引用中的资料,引用[1]提到使用D触发器设计8进制计数器,可能采用了类似的步骤,包括状态图、状态转移表、卡诺图化简,以及电路图设计。而引用[3]中使用了JK触发器实现模5计数器,可能涉及状态检测反馈逻辑。这些可以作为参考,但D触发器设计会有所不同,因为D触发器的输入直接决定下一个状态,所以需要更直接的组合逻辑。 可能的步骤总结: 1. 确定所需触发器数量(4个)。 2. 创建状态转移表,从0000到1001,然后回到0000。 3. 为每个D触发器推导输入D的逻辑表达式,使用卡诺图化简。 4. 设计组合逻辑电路,连接各触发器的D输入端。 5. 添加复位逻辑,当计数到1001时复位到0000。 6. 验证电路,考虑无效状态的处理。 可能需要检查是否存在竞争冒险,并确保时序正确。此外,时钟信号的连接方式如果是同步的,所有触发器共享同一时钟,这样设计会更稳定。 现在需要详细解释每个步骤,并给出具体的逻辑方程电路图。同时,引用中的例子可能帮助说明如何应用这些步骤,比如引用[2]提到使用前一级的Q'作为下一级的时钟,但这是异步设计,而用户可能需要同步设计,所以需要确认。 最后,生成相关问题,帮助用户深入理解模计数器设计可能遇到的问题。</think>### 使用D触发器设计模10计数器的分步解答 #### 1. 确定触发器数量 模10计数器需要覆盖0-9共10个状态。根据二进制编码规则,$2^3=8 < 10 < 2^4=16$,因此需要**4个D触发器**,对应4位二进制输出$Q_3Q_2Q_1Q_0$。 #### 2. 建立状态转移表 定义状态转移规则(十进制加法): | 当前状态 | 下一状态 | |----------|----------| | 0000 | 0001 | | 0001 | 0010 | | ... | ... | | 1001 | 0000 | #### 3. 推导D触发器输入方程 每个D触发器的输入$D_i$由其当前状态决定。通过卡诺图化简得到逻辑表达式(以$D_3$为例): $$D_3 = Q_3 \overline{Q_0} + Q_2 Q_1 Q_0$$ 类似地推导其他触发器的输入方程: - $D_2 = Q_2 \oplus (Q_1 Q_0)$ - $D_1 = Q_1 \oplus Q_0$ - $D_0 = \overline{Q_0}$ #### 4. 复位逻辑设计 当检测到$Q_3Q_2Q_1Q_0=1001$时,通过组合逻辑强制复位: $$RESET = Q_3 \overline{Q_2} \overline{Q_1} Q_0$$ 将此信号连接到所有触发器的异步复位端(若支持)[^1]。 #### 5. 电路实现 ```verilog module mod10_counter( input clk, rst, output reg [3:0] Q ); always @(posedge clk or posedge rst) begin if (rst) Q <= 4'b0000; else begin Q[0] <= ~Q[0]; Q[1] <= Q[1] ^ Q[0]; Q[2] <= Q[2] ^ (Q[1] & Q[0]); Q[3] <= (Q[3] & ~Q[0]) | (Q[2] & Q[1] & Q[0]); end end endmodule ``` #### 6. 无效状态处理 确保无效状态(1010-1111)能在后续时钟周期自动回归有效循环。例如: - 1010 → 1011 → 0100(自校正路径) #### 7. 仿真与验证 使用Quartus或Multisim验证: - 每10个时钟周期完成一次循环 - 复位信号在状态9时触发[^4]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值