MPC+WBC多任务优先级控制例子

本文介绍了一个将模型预测控制(MPC)与全身控制(WBC)结合应用于人形机器人控制的例子,通过多任务优先级处理来确保机器人动态环境中的稳定性。示例代码展示了如何使用CasADi库实现包含平衡、关节角度和末端执行器位置等任务的WBC,并通过MPC优化问题设定目标函数和约束条件。
摘要由CSDN通过智能技术生成

MPC+WBC多任务优先级控制例子

  • 将模型预测控制(Model Predictive Control, MPC)与全身控制(Whole-Body Control, WBC)结合应用于人形机器人是一项复杂的任务,但它可以显著提高机器人在动态环境中的表现。
  • 在实际的全身控制(Whole-Body Control, WBC)中,多个任务的优先级可以通过将这些任务分层次处理来实现。高优先级任务会在主空间中执行,而低优先级任务会在零空间中执行,确保不影响高优先级任务。以下是一个实现多个任务优先级的示例代码。实际应用中,可以在MPC优化问题中添加更多约束和目标函数,以满足全身控制的需求。

示例代码

该示例展示了如何使用CasADi库实现包含多个任务优先级的WBC,并结合MPC进行控制。

import numpy as np
import casadi as ca
import matplotlib
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值