VINS-MONO理论学习---紧耦合后端非线性优化

基于滑动窗的紧耦合后端非线性优化:将视觉约束、IMU约束、闭环约束放到一个大的目标函数中进行非线性优化,求解出滑动窗口中所有帧的PVQ、bias等。

在视觉约束和IMU约束中,基本思想是找到优化状态向量,然后通过视觉残差和IMU测量残差分别对状态向量求导,获得视觉和IMU预积分的Jacobian和协方差矩阵。

一、VIO残差函数的构建

在这里插入图片描述1、需要优化的状态向量:
状态向量包括滑动窗口内的所有相机状态(位置P、旋转Q、速度V、加速度偏置ba、陀螺仪偏置bw)、相机到IMU的外参、所有3D点的逆深度:
在这里插入图片描述

第一个式子是滑动窗口内所有状态量,n是关键帧数量,m是滑动窗内所有观测到的路标点总数,维度是15*n+6+m。特征点逆深度为了满足高斯系统。

第二个式子xk是在第k帧图像捕获到的IMU状态,包括位置,速度,旋转(PVQ)和加速度偏置,陀螺仪偏置。

第三个式子是相机外参。

注意:xk只与IMU项和Marg有关;特征点深度也只与camera和Marg有关;

2、目标函数为:
在这里插入图片描述
视觉惯性BA:这三项分别为边缘化的先验信息、IMU的测量残差、视觉的重投影误差

BA优化模型分为三部分:

1、Marg边缘化残差部分(滑动窗口中去掉位姿和特征点约束)代码中使用Google开源的Ceres solver解决。

2、IMU残差部分(滑动窗口中相邻帧间的IMU产生)

3、视觉误差函数部分(滑动窗口中特征点在相机下视觉重投影残差)

在这里插入图片描述

二、视觉约束

在这里插入图片描述
这部分要拟合的目标可以通过重投影误差约束,求解的是对同一个路标点的观测值和估计值之间的误差,注意是在归一化平面上表示。(视觉测量残差就是重投影误差,定义为一个特征点在归一化相机坐标系下的估计值与观测值的差。估计值即特征点的三维空间坐标(x,y,z)^T ,观测值为其在相机归一化平面的坐标。)

1.视觉重投影误差residual(归一化平面)
在这里插入图片描述

相关自变量是:该路标点被两帧观察到的相机帧位姿、Cam和IMU之间相对位姿、路标点在第一帧的逆深度。

在这里插入图片描述当某路标点在第i帧观测到并进行初始化操作得到路标点逆深度,当其在第j帧也被观测到时,估计其在第j帧中的坐标为:
在这里插入图片描述
此时的视觉残差为:(左侧为根据i帧反推估计的位置,右侧为观测值)
在这里插入图片描述
在这里插入图片描述逆深度参数化
在这里插入图片描述
逆深度作为参数原因:1)观测到的特征点深度可能非常大,难以进行优化;2)可以减少实际优化的参数变量;3)逆深度更加服从高斯分布。这里特征点的逆深度在第i帧初始化操作中得到。

以上是对针孔相机模型的视觉残差,而在VINS论文中其实显示的是对一般相机模型的视觉残差,即使用了广角相机的球面模型。用的是单位半球体的相机观测残差。是一个鱼眼

出现这个错误的原因是在导入seaborn包时,无法从typing模块中导入名为'Protocol'的对象。 解决这个问题的方法有以下几种: 1. 检查你的Python版本是否符合seaborn包的要求,如果不符合,尝试更新Python版本。 2. 检查你的环境中是否安装了typing_extensions包,如果没有安装,可以使用以下命令安装:pip install typing_extensions。 3. 如果你使用的是Python 3.8版本以下的版本,你可以尝试使用typing_extensions包来代替typing模块来解决该问题。 4. 检查你的代码是否正确导入了seaborn包,并且没有其他导入错误。 5. 如果以上方法都无法解决问题,可以尝试在你的代码中使用其他的可替代包或者更新seaborn包的版本来解决该问题。 总结: 出现ImportError: cannot import name 'Protocol' from 'typing'错误的原因可能是由于Python版本不兼容、缺少typing_extensions包或者导入错误等原因造成的。可以根据具体情况尝试上述方法来解决该问题。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [ImportError: cannot import name ‘Literal‘ from ‘typing‘ (D:\Anaconda\envs\tensorflow\lib\typing....](https://blog.csdn.net/yuhaix/article/details/124528628)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值