01.概述
在当今人工智能的浪潮中,多模态模型的崛起为我们带来了前所未有的创新可能性。最近,DeepSeek AI推出了其最新力作——Janus,这是一款具备强大图像生成能力的多模态模型,拥有13亿参数。这款模型的问世,将进一步推动AI在多个领域的应用,本文将带您深入了解Janus的独特之处及其广泛的应用前景。
02.Janus
Janus的命名灵感源于罗马神话中的双面神Janus,象征着过渡与共存。这一命名不仅体现了模型的双重功能,还反映了其处理多模态任务的独特设计。
双重编码器架构
与传统的多模态模型通常依赖单一视觉编码器不同,Janus采用了双重视觉编码路径。这一设计使得模型在理解与生成视觉内容时能够各司其职,充分发挥各自的优势:
-
理解编码器:在处理多模态理解任务时,Janus利用高维语义特征提取方法,通过SigLIP将特征转换为适配语言模型的序列。这种处理方式确保了模型在理解内容时的高效性和准确性。
-
生成编码器:针对视觉生成任务,Janus采用VQ tokenizer将视觉数据转化为离散表示,进而实现细致的图像合成。这种分开处理的方式有效避免了以往模型在理解和生成过程中可能出现的冲突,从而提高了整体的效率和准确性。
03.训练过程与效果
Janus的训练过程分为三个阶段:适配器训练、统一预训练和监督微调。这一分阶段的训练策略不仅增强了模型的多模态能力,还确保了在不同任务中的一致性。
实验结果
实验结果显示,Janus在多项基准测试中表现出色,显著优于之前的模型。在多模态理解方面,Janus的表现超过了LLaVA-v1.5等统一模型,甚至在某些情况下与特定任务模型相媲美。具体而言,Janus在MMBench、SEED-Bench和POPE等基准测试中分别获得了69.4、63.7和87.0的高分,超越了参数更大的模型如Qwen-VL-Chat(7B)。
在视觉生成任务中,Janus同样表现不俗,MSCOCO-30K数据集上取得了8.53的Fréchet Inception Distance(FID)分数,显示出在用户提示下生成图像的一致性优于竞争对手如DALL-E 2和SDXL。这些结果表明,Janus不仅在理解方面表现出色,其生成能力同样令人瞩目。
04.Janus的应用前景
随着技术的不断发展,Janus将有广泛的应用场景,涵盖多个领域:
1. 内容创作
在内容创作领域,Janus的图像生成能力可以帮助创作者快速生成所需的视觉素材。无论是社交媒体的帖子,还是博客文章的插图,Janus都能高效满足创作者的需求,提升创作效率。
2. 教育培训
在教育行业,Janus可以为教材内容生成相应的图像或图表,帮助学生更直观地理解复杂概念。图文结合的方式,不仅提高了学习的趣味性,也大大增强了学习效果。
3. 营销与广告
在营销领域,Janus能够根据广告文案生成相关的视觉内容,帮助品牌更有效地传达信息。通过这一工具,企业能够实现更高效的广告投放,吸引更多目标受众的关注。
4. 游戏设计
在游戏开发中,Janus的图像生成能力可以加速场景和角色的设计,为开发者提供更多创作灵感。同时,玩家也可以通过文字描述生成个性化的游戏内容,提升游戏的沉浸感。
05.未来发展与结语
展望未来,DeepSeek AI计划在Janus的基础上,进一步优化和扩展其功能。未来的版本可能会加入更多复杂的图像生成算法,提高生成图像的细节与真实感。此外,Janus也有潜力与虚拟现实(VR)和增强现实(AR)技术结合,为用户带来更加沉浸式的体验。
DeepSeek AI发布的Janus,作为一款具备强大多模态处理能力的模型,展示了其在图像生成和内容理解方面的独特优势。随着技术的不断演进,Janus的应用前景无疑会更加广泛,未来将在多个行业中发挥重要作用。我们期待着看到Janus在各个领域的深入应用,以及它为我们生活带来的改变。
Janus的发布,不仅是DeepSeek AI在多模态领域的一次重大突破,更是人工智能发展的一次新探索。无论是在创作、教育还是营销,Janus都为我们打开了一扇新的大门,让我们在多模态世界中尽情探索。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。