非线性函数的协方差传播

  设有观测值 X n 1 \mathop{X}\limits_{n1} n1X的非线性函数
Z = f ( X ) (1) Z=f(X) \tag{1} Z=f(X)(1)

或写成 Z = f ( X 1 , X 2 , ⋯   , X n ) Z=f\left(X_{1}, X_{2}, \cdots, X_{n}\right) Z=f(X1,X2,,Xn)

已知 X X X的协方差矩阵 D x x D_{xx} Dxx,欲求Z的协方差 D z z D_{zz} Dzz
  假定观测值 X X X有近似值 X 0 n 1 \mathop{X^0}\limits_{n1} n1X0
X 0 = [ X 1 0 X 2 0 ⋯ X n 0 ] T \begin{aligned} &X^{0}=\left[\begin{array}{llll} X_{1}^{0} & X_{2}^{0} & \cdots & X_{n}^{0} \end{array}\right]^{T}\\ \end{aligned} X0=[X10X20Xn0]T

可将函数式按泰勒级数在点 X 1 0 , X 2 0 , ⋯ X n 0 X_{1}^{0},X_{2}^{0}, \cdots X_{n}^{0} X10,X20,Xn0处展开为
Z = f ( X 1 0 X 2 0 ⋯ X n 0 ) + ( ∂ f ∂ X 1 ) 0 ( X 1 − X 1 0 ) + ( ∂ f ∂ X 2 ) ( X 2 − X 2 0 ) + ⋯ + ( ∂ f ∂ X n ) ( X n − X n 0 ) + ( 二 次 以 上 项 ) . (2) \begin{aligned} &Z=f\left(X_{1}^{0} \quad X_{2}^{0} \quad \cdots \quad X_{n}^{0}\right)+\left(\frac{\partial f}{\partial X_{1}}\right)_{0}\left(X_{1}-X_{1}^{0}\right)\\ &+\left(\frac{\partial f}{\partial X_{2}}\right)\left(X_{2}-X_{2}^{0}\right)+\cdots+\left(\frac{\partial f}{\partial X_{n}}\right)\left(X_{n}-X_{n}^{0}\right)+(二次以上项). \end{aligned}\tag{2} Z=f(X10X20Xn0)+(X1f)0(X1X10)+(X2f)(X2X20)++(Xnf)(XnXn0)+().(2)

式中, ( ∂ f ∂ X i ) 0 (\frac{\partial f}{\partial X_{i}})_0 (Xif)0是函数对各个变量所取的偏导数,并以近似值 X 0 X^0 X0带入所算得的数值,它们都是常数。当 X 0 X^0 X0与X非常接近时,上式中二次以上各项很微小,故可以略去。因此,可将上式写为
Z = ( ∂ f ∂ X 1 ) 0 X 1 + ( ∂ f ∂ X 2 ) 0 X 2 + ⋯ + ( ∂ f ∂ X 2 ) 0 X 0 + f ( X 1 0 , X 2 0 , ⋯   , X n ) − ∑ i = 1 n ( ∂ f ∂ X i ) 0 X i (3) Z=\left(\frac{\partial f}{\partial X_{1}}\right)_{0} X_{1}+\left(\frac{\partial f}{\partial X_{2}}\right)_{0} X_{2}+\cdots+\left(\frac{\partial f}{\partial X_{2}}\right) _{0} X_{0}+f\left(X_{1}^{0}, X_{2}^{0}, \cdots, X_{n}\right)-\sum_{i=1}^{n}\left(\frac{\partial f}{\partial X_{i}}\right) _{0} X_i\tag{3} Z=(X1f)0X1+(X2f)0X2++(X2f)0X0+f(X10,X20,,Xn)i=1n(Xif)0Xi(3)


K = [ k 1 k 2 ⋯ k 2 ] = [ ( ∂ f ∂ X 1 ) 0 ( ∂ f ∂ X 1 ) 0 ⋯ ( ∂ f ∂ X n ) 0 ] K=\left[\begin{array}{llll} k_{1} & k_{2} & \cdots & k_{2} \end{array}\right]=\left[\begin{array}{lll} (\frac{\partial f}{\partial X_{1}})_{0}&(\frac{\partial f}{\partial X_{1}})_{0}& \cdots(\frac{\partial f}{\partial X_{n}})_{0}] \end{array}\right. K=[k1k2k2]=[(X1f)0(X1f)0(Xnf)0]

k 0 = f ( X 1 0 X 2 0 ⋯ X n 0 ) − ∑ i = 1 n ( ∂ f ∂ X i ) 0 X i (4) k_{0}=f\left(X_{1}^{0} \quad X_{2}^{0} \quad \cdots \quad X_{n}^{0}\right)-\sum_{i=1}^{n}\left(\frac{\partial f}{\partial X_{i}}\right)_{0} X_{i}\tag{4} k0=f(X10X20Xn0)i=1n(Xif)0Xi(4)


Z = k 1 X 1 + k 2 X 2 + ⋯ + k n X n + k 0 = K X + k 0 Z=k_{1} X_{1}+k_{2} X_{2}+\cdots+k_{\mathrm{n}} X_{\mathrm{n}}+k_{0}=K X+k_{0} Z=k1X1+k2X2++knXn+k0=KX+k0

这样,就将非线性函数化为线性函数,因此可以按照线性函数的方法求取方差
D z z = K D x x K T (5) D_{z z}=K D_{x x} K^{T}\tag{5} Dzz=KDxxKT(5)

如果令
d X i = X i − X i 0 ( i = 1 , 2 , ⋯   , n ) d X = ( d X 1 d X 2 ⋯ d X n ) T d Z = Z − Z 0 = Z − f ( X 1 0 , X 2 0 , ⋯   , X n 0 ) \begin{aligned} &\mathrm{d} X_{i}=X_{i}-X_{i}^{0} \quad(i=1,2, \cdots, n)\\ &\mathrm{d} X=\left(\begin{array}{llll} \mathrm{d} X_{1} & \mathrm{d} X_{2} & \cdots & \mathrm{d} X_{\mathrm{n}} \end{array}\right)^{\mathrm{T}}\\ &\mathrm{d} Z=Z-Z^{0}=Z-f\left(X_{1}^{0}, X_{2}^{0}, \cdots, X_{n}^{0}\right) \end{aligned} dXi=XiXi0(i=1,2,,n)dX=(dX1dX2dXn)TdZ=ZZ0=Zf(X10,X20,,Xn0)

则可以写为
d Z = ( ∂ f ∂ X 1 ) 0 d X 1 + ( ∂ f ∂ X 2 ) 0 d X 2 + ⋯ + ( ∂ f ∂ X n ) 0 d X n = K d X \mathrm{d} Z=\left(\frac{\partial f}{\partial X_{1}}\right)_{0} \mathrm{d} X_{1}+\left(\frac{\partial f}{\partial X_{2}}\right)_{0} \mathrm{d} X_{2}+\cdots+\left(\frac{\partial f}{\partial X_{n}}\right)_{0} \mathrm{d} X_{n}=K \mathrm{d} X dZ=(X1f)0dX1+(X2f)0dX2++(Xnf)0dXn=KdX

易知上式是非线性函数式的全微分。因为根据式(5)应用协方差传播率式求 D z z D_{zz} Dzz时,只要求知道式中的系数矩阵 K K K。所以,为了求非线性函数的方差,只要对它先求全微分并将非线性函数化为线性函数形式,再按协方差传播律就可求得该函数的方差。
  如果有 t t t个非线性函数
Z 1 = f 1 ( X 1 , X 2 , ⋯   , X n ) Z 2 = f 2 ( X 1 , X 2 , ⋯   , X n ) ⋯ ⋯ Z t = f t ( X 1 , X 2 , ⋯   , X n ) } \left.\begin{array}{l} Z_{1}=f_{1}\left(X_{1}, X_{2}, \cdots, X_{n}\right) \\ Z_{2}=f_{2}\left(X_{1}, X_{2}, \cdots, X_{n}\right) \\ \cdots\cdots\\ Z_{t}=f_{t}\left(X_{1}, X_{2}, \cdots, X_{n}\right) \\ \end{array}\right\} Z1=f1(X1,X2,,Xn)Z2=f2(X1,X2,,Xn)Zt=ft(X1,X2,,Xn)

t t t个函数求全微分得
d Z 1 = ( ∂ f 1 ∂ X 1 ) 0 d X 1 + ( ∂ f 1 ∂ X 2 ) 0 d X 2 + ⋯ + ( ∂ f 1 ∂ X n ) 0 d X n d Z 2 = ( ∂ f 2 ∂ X 1 ) 0 d X 1 + ( ∂ f 2 ∂ X 2 ) 0 d X 2 + ⋯ + ( ∂ f 2 ∂ X n ) 0 d X n ⋯ ⋯ d Z t = ( ∂ f t ∂ X 1 ) 0 d X 1 + ( ∂ f t ∂ X 2 ) 0 d X 2 + ⋯ + ( ∂ f t ∂ X n ) 0 d X n } \left.\begin{array}{l} \mathrm{d} Z_{1}=\left(\frac{\partial f_{1}}{\partial X_{1}}\right)_{0} \mathrm{d} X_{1}+\left(\frac{\partial f_{1}}{\partial X_{2}}\right)_{0} \mathrm{d} X_{2}+\cdots+\left(\frac{\partial f_{1}}{\partial X_{n}}\right)_{0} \mathrm{d} X_{n} \\ \mathrm{d} Z_{2}=\left(\frac{\partial f_{2}}{\partial X_{1}}\right)_{0} \mathrm{d} X_{1}+\left(\frac{\partial f_{2}}{\partial X_{2}}\right)_{0} \mathrm{d} X_{2}+\cdots+\left(\frac{\partial f_{2}}{\partial X_{n}}\right)_{0} \mathrm{d} X_{n}\\ \cdots\cdots\\ d Z_{t}=\left(\frac{\partial f_{t}}{\partial X_{1}}\right)_{0} d X_{1}+\left(\frac{\partial f_{t}}{\partial X_{2}}\right)_{0} d X_{2}+\cdots+\left(\frac{\partial f_{t}}{\partial X_{n}}\right)_{0} d X_{n} \\ \end{array}\right\} dZ1=(X1f1)0dX1+(X2f1)0dX2++(Xnf1)0dXndZ2=(X1f2)0dX1+(X2f2)0dX2++(Xnf2)0dXndZt=(X1ft)0dX1+(X2ft)0dX2++(Xnft)0dXn

若记
Z t 1 = [ Z 1 Z 2 ⋮ Z i ] , d Z t 1 = [ d Z 1 d Z 2 ⋮ d Z i ] \mathop{Z}\limits_{t1}=\left[\begin{array}{c} Z_{1} \\ Z_{2} \\ \vdots \\ Z_{i} \end{array}\right], \quad \mathop{dZ}\limits_{t1}=\left[\begin{array}{c} \mathrm{d} Z_{1} \\ \mathrm{d} Z_{2} \\ \vdots \\ \mathrm{d} Z_{i} \end{array}\right] t1Z=Z1Z2Zi,t1dZ=dZ1dZ2dZi

K t n = [ ( ∂ f 1 ∂ X 1 ) 0 ( ∂ f 1 ∂ X 2 ) 0 ⋯ ( ∂ f 1 ∂ X n ) 0 ( ∂ f 2 ∂ X 1 ) 0 ( ∂ f 2 ∂ X 2 ) 0 ⋯ ( ∂ f 2 ∂ X n ) 0 ⋮ ⋮ ⋮ ( ∂ f 1 ∂ X 1 ) 0 ( ∂ f 1 ∂ X 2 ) 0 ⋯ ( ∂ f t ∂ X n ) 0 ] \mathop{K}\limits_{tn}=\left[\begin{array}{cc} \left(\frac{\partial f_{1}}{\partial X_{1}}\right)_{0} & \left(\frac{\partial f_{1}}{\partial X_{2}}\right)_{0} & \cdots & \left(\frac{\partial f_{1}}{\partial X_{n}}\right)_{0} \\ \left(\frac{\partial f_{2}}{\partial X_{1}}\right)_{0} & \left(\frac{\partial f_{2}}{\partial X_{2}}\right)_{0} & \cdots & \left(\frac{\partial f_{2}}{\partial X_{n}}\right)_{0} \\ \vdots & \vdots & \vdots & \\ \left(\frac{\partial f_{1}}{\partial X_{1}}\right)_{0} & \left(\frac{\partial f_{1}}{\partial X_{2}}\right)_{0} & \cdots & \left(\frac{\partial f_{t}}{\partial X_{n}}\right)_{0} \end{array}\right] tnK=(X1f1)0(X1f2)0(X1f1)0(X2f1)0(X2f2)0(X2f1)0(Xnf1)0(Xnf2)0(Xnft)0

则有
d Z = K d X dZ=KdX dZ=KdX

亦可求得 Z t 1 \mathop{Z}\limits_{t1} t1Z的协方差矩阵。
D z z = K D x x K T D_{z z}=K D_{x x} K^{T} Dzz=KDxxKT

注:观测值 X X X的近似值 X 0 n 1 \mathop{X^0}\limits_{n1} n1X0通常是其期望,或者是当前的工作点。

参看文献
误差测量与平差基础 武汉大学出版社

  • 2
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值