一、FMCW雷达基本原理简介
调频连续波雷达(Frequency Modulated Continuous Wave Radar,简称FMCW雷达),是指发射频率受特定信号调制的连续波雷达。其连续发射调频信号,以测量距离、速度以及角度。FMCW雷达系统所用信号的频率随时间变化呈线性升高。这种类型的信号也称为线性调频脉冲,下面为发射单个脉冲测距和脉冲串测速的示意图。
二、FMCW雷达测距原理
1.探测距离和距离分辨率
探测目标到雷达的距离为R,雷达接收机接收信号延时为
τ
\tau
τ,光速为c,在忽略目标速度的情况下,则探测距离R与延时
τ
\tau
τ,光速c之间有如下关系:
R
=
τ
c
2
R=\frac{\tau c}{2}
R=2τc
(延时
τ
\tau
τ内电磁波行进了2倍的目标距离)
对于线性调频信号而言,信号带宽B与线性调频率S,信号时宽T的关系如下:
B
=
S
∗
T
B=S*T
B=S∗T
对于混频得到中频信号频率f而言,有如下:
f
=
S
∗
τ
f=S*\tau
f=S∗τ
继续变换,得到目标距离R和中频频率f的关系:
R
=
f
c
2
S
R=\frac{fc}{2S}
R=2Sfc
上式得到目标距离的表达式,下面对雷达的距离分辨率进行探究,在雷达距离维进行FFT,又被称为快时间的FFT,即在一个线性调频脉冲时间
T
T
T之内完成。为了更好的理解距离分辨率,从上式可看出,距离
R
R
R与
f
f
f有着对应关系,在距离FFT中,得到峰值正对应频率
f
f
f处,所以距离分辨率
Δ
R
\Delta R
ΔR与频率的最小分辨率
Δ
f
\Delta f
Δf相对应,有如下关系:
Δ
R
=
Δ
f
c
2
S
\Delta R=\frac{Δfc}{2S}
ΔR=2SΔfc
在这里利用FFT的角度来理解f的分辨率,在其他的资料里,强调在一个时宽T的范围内,频率分辨率为1/T,但是并未给出频率分辨率f的推导过程。这里在FFT的角度上进行推导,假设采样频率为
f
s
f_s
fs,采样的点数为
M
M
M,fft的点数为M1,FFT的频率分辨率
Δ
f
\Delta f
Δf计算公式如下:
Δ
f
=
f
s
1
M
1
,
M
=
f
s
∗
T
Δ f = f_s \frac{1}{M1},M=f_s*T
Δf=fsM11,M=fs∗T
(在时宽
T
T
T的范围内,采样点为M个,则有:
M
=
f
s
∗
T
M=f_s*T
M=fs∗T)
结合上面两个公式,如果fft点数等于采样点数,即
M
=
M
1
M=M1
M=M1,有如下:
Δ
f
=
1
T
Δf=\frac{1}{T}
Δf=T1
所以距离分辨率
Δ
R
ΔR
ΔR有如下的表达式:
Δ
R
=
Δ
f
c
2
S
=
c
2
S
T
=
c
2
B
\Delta R=\frac{Δfc}{2S}=\frac{c}{2ST}=\frac{c}{2B}
ΔR=2SΔfc=2STc=2Bc
如果fft点数
M
1
M1
M1不等于采样点数
M
M
M,则距离分辨率
Δ
R
ΔR
ΔR为:
Δ
R
=
Δ
f
c
2
S
=
f
s
∗
c
2
S
∗
M
1
=
c
∗
M
2
B
∗
M
1
ΔR=\frac{Δfc}{2S}=\frac{fs*c}{2S*M1}=\frac{c*M}{2B*M1}
ΔR=2SΔfc=2S∗M1fs∗c=2B∗M1c∗M
三、FMCW雷达测速原理
1.探测速度和速度分辨率
上节的推导只是不考虑物体速度的特殊情况,对于FMCW雷达而言,测速功能是通过多普勒FFT功能进行实现的。FMCW雷达的测速值,可以通过相位变化量得到,连续两个脉冲之间最大的相位移动为
π
\pi
π,超过相移量
π
\pi
π就会出现测速模糊。
下面对多普勒FFT得到的速度分辨率进行推导,发射的信号为线性调频信号:
s
(
t
)
=
A
c
o
s
(
2
π
(
f
c
t
+
S
t
2
2
)
+
φ
0
)
s(t)=Acos(2π(f_ct+\frac{St^{2}}{2})+φ_0)
s(t)=Acos(2π(fct+2St2)+φ0)
S
S
S为线性调频斜率,
f
c
f_c
fc为信号的载频,
φ
0
φ_0
φ0为信号的初始相位。上面得到的公式仅是一个脉冲时间
T
T
T内信号的表达式,在发射多个脉冲串的情况下,公式会有所不同。首先,第
n
+
1
n+1
n+1个脉冲时间
t
t
t有如下的表达形式:
t
=
t
s
+
n
T
t=t_s+nT
t=ts+nT
在上式中,
0
<
t
s
<
T
0<t_s<T
0<ts<T,为
n
+
1
n+1
n+1脉冲内进行的时间,
n
n
n为脉冲数,
T
T
T为一个脉冲对应的周期,第
n
+
1
n+1
n+1个发射信号瞬时频率表达式
f
瞬
f_瞬
f瞬可以表示为:
f
瞬
=
f
c
+
S
(
t
−
n
T
)
=
f
c
+
S
t
s
f_瞬=f_c+S(t-nT)=f_c+St_s
f瞬=fc+S(t−nT)=fc+Sts
对
f
瞬
f_瞬
f瞬进行积分,得到
n
+
1
n+1
n+1个发射信号的表达式如下:
s
(
t
)
=
A
c
o
s
(
2
π
(
f
c
t
+
S
t
s
2
2
)
+
φ
0
)
,
(
t
=
t
s
+
n
T
)
s(t)=Acos(2π(f_ct+\frac{St_s^{2}}{2})+φ_0),(t=t_s+nT)
s(t)=Acos(2π(fct+2Sts2)+φ0),(t=ts+nT)
假设目标以速度
v
v
v运动,接收到的回波信号延时为
τ
\tau
τ,
τ
\tau
τ有如下的表达式:
τ
=
2
(
R
+
v
t
)
c
,
(
τ
<
<
T
)
\tau=\frac{2(R+vt)}{c},(\tau<<T)
τ=c2(R+vt),(τ<<T)
所以回波信号
s
1
(
t
)
s_1(t)
s1(t)有如下的表达式:
s
1
(
t
)
=
B
c
o
s
(
2
π
(
f
c
(
t
−
τ
)
+
S
(
t
s
−
τ
)
2
2
)
+
φ
0
)
)
s_1(t)=Bcos(2π(f_c(t−τ)+\frac{S(t_s−τ)^{2}}{2})+φ_0))
s1(t)=Bcos(2π(fc(t−τ)+2S(ts−τ)2)+φ0))
发射信号与回波信号混频之后得到如下表达式:(幅度或许可以改为C)
s
m
i
x
(
t
)
=
A
B
2
c
o
s
(
2
π
(
f
c
τ
+
S
τ
t
s
−
S
τ
2
2
)
)
s_{mix}(t)=\frac{AB}{2}cos(2π(f_cτ+Sτt_s−\frac{Sτ^{2}}{2}))
smix(t)=2ABcos(2π(fcτ+Sτts−2Sτ2))
对于上式的混频结果,不难看出,在物体速度为0,或者忽略速度的影响下,
τ
=
2
R
c
\tau=\frac{2R}{c}
τ=c2R,则中频信号
s
m
i
x
s_{mix}
smix对应的频率,即中频为:
f
=
S
τ
=
S
∗
2
R
c
=
2
R
S
c
f=S\tau=S*\frac{2R}{c}=\frac{2RS}{c}
f=Sτ=S∗c2R=c2RS
上式的结果与上一节的推导相吻合,如果考虑速度的影响,即
τ
=
2
(
R
+
v
t
)
c
\tau=\frac{2(R+vt)}{c}
τ=c2(R+vt),把
t
=
t
s
+
n
T
t=t_s+nT
t=ts+nT的表达式代入之后,得到如下的混频结果:
s
m
i
x
(
t
)
=
A
B
2
c
o
s
(
2
π
(
2
(
R
+
v
t
)
f
c
c
+
2
(
R
+
v
t
)
S
t
s
c
−
2
S
(
R
+
v
t
)
2
c
2
)
)
s_{mix}(t)=\frac{AB}{2}cos(2π(\frac{2(R+vt)f_c}{c}+\frac{2(R+vt)St_s}{c}−\frac{2S(R+vt)^{2}}{c^{2}}))
smix(t)=2ABcos(2π(c2(R+vt)fc+c2(R+vt)Sts−c22S(R+vt)2))
经过一系列的化简之后,最终的表达形式如下所示:
s
m
i
x
(
t
)
=
A
B
2
c
o
s
(
2
π
(
2
f
c
R
c
+
2
f
c
v
t
s
c
+
2
f
c
v
n
T
c
+
2
R
S
t
s
c
+
2
v
S
t
s
2
c
+
2
v
S
n
T
t
s
c
−
2
S
(
R
+
v
(
t
s
+
n
T
)
)
2
c
2
)
)
s_{mix}(t)=\frac{AB}{2}cos(2π(\frac{2f_cR}{c}+\frac{2f_cvt_s}{c}+\frac{2f_cvnT}{c}+\frac{2RSt_s}{c}+\frac{2vSt_s^{2}}{c}+\frac{2vSnTt_s}{c}−\frac{2S(R+v(t_s+nT))^{2}}{c^{2}}))
smix(t)=2ABcos(2π(c2fcR+c2fcvts+c2fcvnT+c2RSts+c2vSts2+c2vSnTts−c22S(R+v(ts+nT))2))
在上式中,
c
2
c^2
c2此项过大,可以忽略这项。根据混频信号的相位变化,可以得到对应的速度信息。 设
φ
1
=
2
π
(
2
f
c
R
c
)
\varphi_1=2π(\frac{2f_cR}{c})
φ1=2π(c2fcR),继续对上式进行化简,得到:
s
m
i
x
(
t
)
=
A
B
2
c
o
s
(
2
π
(
2
f
c
v
t
s
c
+
2
R
S
t
s
c
+
2
v
S
t
s
2
c
+
2
v
S
n
T
t
s
c
+
2
f
c
v
n
T
c
)
+
φ
1
)
s_{mix}(t)=\frac{AB}{2}cos(2π(\frac{2f_cvt_s}{c}+\frac{2RSt_s}{c}+\frac{2vSt_s^{2}}{c}+\frac{2vSnTt_s}{c}+\frac{2f_cvnT}{c})+\varphi_1)
smix(t)=2ABcos(2π(c2fcvts+c2RSts+c2vSts2+c2vSnTts+c2fcvnT)+φ1)
在进行多普勒FFT时,也就是在慢时间中求的不同脉冲(脉冲对应的
n
n
n值不同)在相同时间
t
s
t_s
ts下相位的变化值。观察上式,可以发现相邻两个脉冲间
n
n
n值差为1,得到相位差值
w
w
w如下结果:
w
=
2
π
(
2
v
S
T
t
s
c
+
2
f
c
v
T
c
)
=
2
π
(
2
B
v
t
s
c
+
2
f
c
v
T
c
)
w=2\pi (\frac{2vSTt_s}{c}+\frac{2f_cvT}{c})=2\pi (\frac{2Bvt_s}{c}+\frac{2f_cvT}{c})
w=2π(c2vSTts+c2fcvT)=2π(c2Bvts+c2fcvT)
在上式中,
t
s
t_s
ts值为距离FFT峰值出现的时间,一般为ms级别。因为
f
c
f_c
fc 通常是几十G量级,而
S
=
S=
S=
B
T
\frac{B}{T}
TB,
B
B
B可能达到G量级,一般来说,
B
<
<
f
c
B<<f_c
B<<fc,所以相位的变化值可以近似看为:
w
=
4
π
f
c
v
T
c
w=\frac{4\pi f_cvT}{c}
w=c4πfcvT
结合上式,得到速度的表达式为:
v
=
w
∗
c
4
π
f
c
T
v=\frac{w *c}{4\pi f_cT}
v=4πfcTw∗c
脉冲串的数量为
N
N
N,对于速度FFT而言,假设采样频率为
F
s
F_s
Fs,FFT的采样点数,假如为
N
1
N1
N1。可以这么理解,在
N
∗
T
N*T
N∗T的时间内,采样频率为
F
s
F_s
Fs,采样点数为
N
1
N1
N1,所以
F
s
=
N
N
T
=
1
T
=
P
R
F
F_s=\frac{N}{NT}=\frac{1}{T}=PRF
Fs=NTN=T1=PRF,即在
N
T
NT
NT时间内采了
N
1
N1
N1个点数,频率分辨率
Δ
f
=
F
s
N
1
\Delta f=\frac{F_s}{N1}
Δf=N1Fs,
N
1
N1
N1为
F
F
T
FFT
FFT点数,进一步推导得到FFT的最小相位分辨
Δ
w
\Delta w
Δw:
Δ
w
=
2
π
Δ
f
F
s
=
2
π
N
1
\Delta w=2\pi\frac{\Delta f}{F_s}=\frac{2\pi}{N1}
Δw=2πFsΔf=N12π
速度
v
v
v的分辨率有如下表达式:
Δ
v
=
Δ
w
∗
c
4
π
f
c
T
\Delta v=\frac{\Delta w *c}{4\pi f_cT}
Δv=4πfcTΔw∗c
将
Δ
w
\Delta w
Δw表达式带入之后,即可以得到速度
v
v
v的分辨率:
Δ
v
=
c
2
f
c
N
1
∗
T
,当
N
=
N
1
时,
Δ
v
=
c
2
f
c
N
f
\Delta v=\frac{c}{2f_cN1*T},当N=N1时,\Delta v=\frac{c}{2f_cN_f}
Δv=2fcN1∗Tc,当N=N1时,Δv=2fcNfc
上式中,
N
f
N_f
Nf为N个脉冲的时间累计和。
四、FMCW雷达二维FFT代码(matlab)
见资源
总结
本文给出了调频连续波雷达(FMCW)雷达测距和测速的原理,并给出了其推导过程,后续会对FMCW处理的全流程进行仿真和原理介绍,敬请期待。