调频连续波(FMCW)雷达测距、测速详解


一、FMCW雷达基本原理简介

调频连续波雷达(Frequency Modulated Continuous Wave Radar,简称FMCW雷达),是指发射频率受特定信号调制的连续波雷达。其连续发射调频信号,以测量距离、速度以及角度。FMCW雷达系统所用信号的频率随时间变化呈线性升高。这种类型的信号也称为线性调频脉冲,下面为发射单个脉冲测距和脉冲串测速的示意图。
单个脉冲测距
测速

二、FMCW雷达测距原理

1.探测距离和距离分辨率

探测目标到雷达的距离为R,雷达接收机接收信号延时为 τ \tau τ,光速为c,在忽略目标速度的情况下,则探测距离R与延时 τ \tau τ,光速c之间有如下关系:
R = τ c 2 R=\frac{\tau c}{2} R=2τc
(延时 τ \tau τ内电磁波行进了2倍的目标距离)
对于线性调频信号而言,信号带宽B与线性调频率S,信号时宽T的关系如下:
B = S ∗ T B=S*T B=ST
对于混频得到中频信号频率f而言,有如下:
f = S ∗ τ f=S*\tau f=Sτ
继续变换,得到目标距离R和中频频率f的关系:
R = f c 2 S R=\frac{fc}{2S} R=2Sfc
上式得到目标距离的表达式,下面对雷达的距离分辨率进行探究,在雷达距离维进行FFT,又被称为快时间的FFT,即在一个线性调频脉冲时间 T T T之内完成。为了更好的理解距离分辨率,从上式可看出,距离 R R R f f f有着对应关系,在距离FFT中,得到峰值正对应频率 f f f处,所以距离分辨率 Δ R \Delta R ΔR与频率的最小分辨率 Δ f \Delta f Δf相对应,有如下关系:
Δ R = Δ f c 2 S \Delta R=\frac{Δfc}{2S} ΔR=2SΔfc
在这里利用FFT的角度来理解f的分辨率,在其他的资料里,强调在一个时宽T的范围内,频率分辨率为1/T,但是并未给出频率分辨率f的推导过程。这里在FFT的角度上进行推导,假设采样频率为 f s f_s fs,采样的点数为 M M M,fft的点数为M1,FFT的频率分辨率 Δ f \Delta f Δf计算公式如下:
Δ f = f s 1 M 1 , M = f s ∗ T Δ f = f_s \frac{1}{M1},M=f_s*T Δf=fsM11,M=fsT
(在时宽 T T T的范围内,采样点为M个,则有: M = f s ∗ T M=f_s*T M=fsT)
结合上面两个公式,如果fft点数等于采样点数,即 M = M 1 M=M1 M=M1,有如下:
Δ f = 1 T Δf=\frac{1}{T} Δf=T1
所以距离分辨率 Δ R ΔR ΔR有如下的表达式:
Δ R = Δ f c 2 S = c 2 S T = c 2 B \Delta R=\frac{Δfc}{2S}=\frac{c}{2ST}=\frac{c}{2B} ΔR=2SΔfc=2STc=2Bc
如果fft点数 M 1 M1 M1不等于采样点数 M M M,则距离分辨率 Δ R ΔR ΔR为:
Δ R = Δ f c 2 S = f s ∗ c 2 S ∗ M 1 = c ∗ M 2 B ∗ M 1 ΔR=\frac{Δfc}{2S}=\frac{fs*c}{2S*M1}=\frac{c*M}{2B*M1} ΔR=2SΔfc=2SM1fsc=2BM1cM

三、FMCW雷达测速原理

1.探测速度和速度分辨率

上节的推导只是不考虑物体速度的特殊情况,对于FMCW雷达而言,测速功能是通过多普勒FFT功能进行实现的。FMCW雷达的测速值,可以通过相位变化量得到,连续两个脉冲之间最大的相位移动为 π \pi π,超过相移量 π \pi π就会出现测速模糊。
下面对多普勒FFT得到的速度分辨率进行推导,发射的信号为线性调频信号:
s ​ ( t ) = A c o s ( 2 π ( f c ​ t + S t 2 2 ​ ) + φ 0 ​ ) s​(t)=Acos(2π(f_c​t+\frac{St^{2}}{2}​)+φ_0​) s(t)=Acos(2π(fct+2St2)+φ0)
S S S为线性调频斜率, f c f_c fc为信号的载频, φ 0 ​ φ_0​ φ0为信号的初始相位。上面得到的公式仅是一个脉冲时间 T T T内信号的表达式,在发射多个脉冲串的情况下,公式会有所不同。首先,第 n + 1 n+1 n+1个脉冲时间 t t t有如下的表达形式:
t = t s + n T t=t_s+nT t=ts+nT
在上式中, 0 < t s < T 0<t_s<T 0<ts<T,为 n + 1 n+1 n+1脉冲内进行的时间, n n n为脉冲数, T T T为一个脉冲对应的周期,第 n + 1 n+1 n+1个发射信号瞬时频率表达式 f 瞬 f_瞬 f可以表示为:
f 瞬 = f c + S ( t − n T ) = f c + S t s f_瞬=f_c+S(t-nT)=f_c+St_s f=fc+S(tnT)=fc+Sts
f 瞬 f_瞬 f进行积分,得到 n + 1 n+1 n+1个发射信号的表达式如下:
s ​ ( t ) = A c o s ( 2 π ( f c ​ t + S t s 2 2 ​ ) + φ 0 ​ ) , ( t = t s + n T ) s​(t)=Acos(2π(f_c​t+\frac{St_s^{2}}{2}​)+φ_0​),(t=t_s+nT) s(t)=Acos(2π(fct+2Sts2)+φ0)(t=ts+nT)
假设目标以速度 v v v运动,接收到的回波信号延时为 τ \tau τ τ \tau τ有如下的表达式:
τ = 2 ( R + v t ) c , ( τ < < T ) \tau=\frac{2(R+vt)}{c},(\tau<<T) τ=c2(R+vt)(τ<<T)
所以回波信号 s 1 ( t ) s_1(t) s1(t)有如下的表达式:
s 1 ( t ) = B c o s ( 2 π ( f c ​ ( t − τ ) + S ( t s − τ ) 2 ​ 2 ) + φ 0 ​ ) ) s_1(t)=Bcos(2π(f_c​(t−τ)+\frac{S(t_s−τ)^{2}​}{2})+φ_0​)) s1(t)=Bcos(2π(fc(tτ)+2S(tsτ)2)+φ0))
发射信号与回波信号混频之后得到如下表达式:(幅度或许可以改为C)
s m i x ( t ) ​ = A B 2 c o s ( 2 π ( f c ​ τ + S τ t s − S τ 2 2 ​ ) ) s_{mix}(t)​=\frac{AB}{2}cos(2π(f_c​τ+Sτt_s−\frac{Sτ^{2}}{2}​)) smix(t)=2ABcos(2π(fcτ+Sτts2Sτ2))
对于上式的混频结果,不难看出,在物体速度为0,或者忽略速度的影响下, τ = 2 R c \tau=\frac{2R}{c} τ=c2R,则中频信号 s m i x s_{mix} smix对应的频率,即中频为:
f = S τ = S ∗ 2 R c = 2 R S c f=S\tau=S*\frac{2R}{c}=\frac{2RS}{c} f=Sτ=Sc2R=c2RS
上式的结果与上一节的推导相吻合,如果考虑速度的影响,即 τ = 2 ( R + v t ) c \tau=\frac{2(R+vt)}{c} τ=c2(R+vt),把 t = t s + n T t=t_s+nT t=ts+nT的表达式代入之后,得到如下的混频结果:
s m i x ​ ( t ) ​ = A B 2 ​ c o s ( 2 π ( 2 ( R + v t ) f c c + 2 ( R + v t ) S t s c − 2 S ( R + v t ) 2 c 2 ​ ) ) s_{mix}​(t)​=\frac{AB}{2}​cos(2π(\frac{2(R+vt)f_c}{c}+\frac{2(R+vt)St_s}{c}−\frac{2S(R+vt)^{2}}{c^{2}}​)) smix(t)=2ABcos(2π(c2(R+vt)fc+c2(R+vt)Stsc22S(R+vt)2))
经过一系列的化简之后,最终的表达形式如下所示:
s m i x ​ ( t ) ​ = A B 2 ​ c o s ( 2 π ( 2 f c R c + 2 f c v t s c + 2 f c v n T c + 2 R S t s c + 2 v S t s 2 c + 2 v S n T t s c − 2 S ( R + v ( t s + n T ) ) 2 c 2 ​ ) ) s_{mix}​(t)​=\frac{AB}{2}​cos(2π(\frac{2f_cR}{c}+\frac{2f_cvt_s}{c}+\frac{2f_cvnT}{c}+\frac{2RSt_s}{c}+\frac{2vSt_s^{2}}{c}+\frac{2vSnTt_s}{c}−\frac{2S(R+v(t_s+nT))^{2}}{c^{2}}​)) smix(t)=2ABcos(2π(c2fcR+c2fcvts+c2fcvnT+c2RSts+c2vSts2+c2vSnTtsc22S(R+v(ts+nT))2))

在上式中, c 2 c^2 c2此项过大,可以忽略这项。根据混频信号的相位变化,可以得到对应的速度信息。 设 φ 1 = 2 π ( 2 f c R c ) \varphi_1=2π(\frac{2f_cR}{c}) φ1=2π(c2fcR),继续对上式进行化简,得到:
s m i x ​ ( t ) ​ = A B 2 ​ c o s ( 2 π ( 2 f c v t s c + 2 R S t s c + 2 v S t s 2 c + 2 v S n T t s c + 2 f c v n T c ) + φ 1 ) s_{mix}​(t)​=\frac{AB}{2}​cos(2π(\frac{2f_cvt_s}{c}+\frac{2RSt_s}{c}+\frac{2vSt_s^{2}}{c}+\frac{2vSnTt_s}{c}+\frac{2f_cvnT}{c})+\varphi_1) smix(t)=2ABcos(2π(c2fcvts+c2RSts+c2vSts2+c2vSnTts+c2fcvnT)+φ1)
在进行多普勒FFT时,也就是在慢时间中求的不同脉冲(脉冲对应的 n n n值不同)在相同时间 t s t_s ts下相位的变化值。观察上式,可以发现相邻两个脉冲间 n n n值差为1,得到相位差值 w w w如下结果:
w = 2 π ( 2 v S T t s c + 2 f c v T c ) = 2 π ( 2 B v t s c + 2 f c v T c ) w=2\pi (\frac{2vSTt_s}{c}+\frac{2f_cvT}{c})=2\pi (\frac{2Bvt_s}{c}+\frac{2f_cvT}{c}) w=2π(c2vSTts+c2fcvT)=2π(c2Bvts+c2fcvT)
在上式中, t s t_s ts值为距离FFT峰值出现的时间,一般为ms级别。因为 f c f_c fc 通常是几十G量级,而 S = S= S= B T \frac{B}{T} TB, B B B可能达到G量级,一般来说, B < < f c B<<f_c B<<fc,所以相位的变化值可以近似看为:
w = 4 π f c v T c w=\frac{4\pi f_cvT}{c} w=c4πfcvT
结合上式,得到速度的表达式为:
v = w ∗ c 4 π f c T v=\frac{w *c}{4\pi f_cT} v=4πfcTwc
脉冲串的数量为 N N N,对于速度FFT而言,假设采样频率为 F s F_s Fs,FFT的采样点数,假如为 N 1 N1 N1。可以这么理解,在 N ∗ T N*T NT的时间内,采样频率为 F s F_s Fs,采样点数为 N 1 N1 N1,所以 F s = N N T = 1 T = P R F F_s=\frac{N}{NT}=\frac{1}{T}=PRF Fs=NTN=T1=PRF,即在 N T NT NT时间内采了 N 1 N1 N1个点数,频率分辨率 Δ f = F s N 1 \Delta f=\frac{F_s}{N1} Δf=N1Fs N 1 N1 N1 F F T FFT FFT点数,进一步推导得到FFT的最小相位分辨 Δ w \Delta w Δw
Δ w = 2 π Δ f F s = 2 π N 1 \Delta w=2\pi\frac{\Delta f}{F_s}=\frac{2\pi}{N1} Δw=2πFsΔf=N12π
速度 v v v的分辨率有如下表达式:
Δ v = Δ w ∗ c 4 π f c T \Delta v=\frac{\Delta w *c}{4\pi f_cT} Δv=4πfcTΔwc
Δ w \Delta w Δw表达式带入之后,即可以得到速度 v v v的分辨率:
Δ v = c 2 f c N 1 ∗ T ,当 N = N 1 时, Δ v = c 2 f c N f \Delta v=\frac{c}{2f_cN1*T},当N=N1时,\Delta v=\frac{c}{2f_cN_f} Δv=2fcN1Tc,当N=N1时,Δv=2fcNfc
上式中, N f N_f Nf为N个脉冲的时间累计和。

四、FMCW雷达二维FFT代码(matlab)

见资源

总结

本文给出了调频连续波雷达(FMCW)雷达测距和测速的原理,并给出了其推导过程,后续会对FMCW处理的全流程进行仿真和原理介绍,敬请期待。

### 回答1: FMCW测速(Moving Target Indication, MTI)是一种通过频率调制连续(CW)来实现目标测速的技术。它在雷达测速、无人驾驶车辆和航空航天等领域应用广泛。MATLAB是一种强大的科学计算软件,可以提供用于实现FMCW测速算法的工具和函数。 使用MATLAB实现FMCW测速主要包括以下步骤: 首先,我们需要定义并生成FMCW信号。FMCW信号包括一个线性变化的频率扫描信号和一个连续形信号。我们可以使用MATLAB中的信号处理工具箱来生成这样的信号。 然后,我们需要实现FMCW信号的发送和接收。根据FMCW原理,我们需要在发送端将FMCW信号发送出去,然后在接收端接收反射回来的信号。这可以通过MATLAB中的信号处理函数来完成。 接下来,我们需要对接收到的信号进行处理。通常,我们会进行频谱分析和目标检测。MATLAB提供了丰富的信号处理函数和算法,可以帮助我们对接收到的信号进行频谱分析和目标检测。 最后,我们可以根据目标的频谱特征进行速度计算。在FMCW测速中,我们通过测量目标的多普勒频移来计算目标的速度。MATLAB提供了多种频谱分析算法,并可以帮助我们进行目标的速度计算。 总的来说,使用MATLAB实现FMCW测速需要定义和生成FMCW信号、进行信号发送和接收、信号处理和目标检测,以及速度计算等步骤。通过MATLAB强大的功能和丰富的算法库,我们可以轻松实现FMCW测速算法,并应用于相关的领域。 ### 回答2: FMCW是一种测速技术,其全称是频率调制连续 (Frequency Modulated Continuous Wave)。它基于连续信号的频率调制,利用信号的频率差异来测量目标物体的速度。 MATLAB是一种强大的数学和工程计算软件,能够进行各种信号处理和数据分析。因此,我们可以使用MATLAB来实现FMCW测速算法。 实现FMCW测速算法的基本步骤如下: 首先,我们需要设计一个FMCW信号。这个信号由一个连续信号和一个线性调制信号组成。我们可以使用MATLAB中的信号处理工具箱来生成这个信号。 接下来,我们需要将FMCW信号发送到目标物体上,并接收回来的信号。这里涉及到雷达系统的硬件设计和信号处理的问题。我们可以使用MATLAB中的雷达信号处理工具箱来完成这个步骤。 然后,我们需要对接收到的信号进行处理,以提取目标物体的速度信息。这一步骤通常涉及到频谱分析和相关运算。在MATLAB中,我们可以使用FFT (Fast Fourier Transform)函数来进行频谱分析,使用相关函数来进行相关运算。 最后,我们可以利用得到的速度信息来进行目标物体的测速。根据FMCW原理,我们可以通过测量信号的频率差异来计算目标物体的速度。 通过以上步骤,我们可以实现FMCW测速算法。MATLAB提供丰富的信号处理和数据分析工具,可以方便地进行相关操作。使用MATLAB完成FMCW测速算法的开发,能够快速准确地获取目标物体的速度信息,具有较高的实用性和可行性。 ### 回答3: FMCW(Frequency-Modulated Continuous Wave)全称为频率调制连续,在雷达测速中常常用于测量目标物体的速度。而MATLAB则是一种常用的科学计算软件,对于FMCW测速算法的实现和仿真具有很高的便捷性和灵活性。 在MATLAB中实现FMCW测速算法涉及到两个主要的步骤:信号生成和信号处理。 首先是信号生成,MATLAB提供了丰富的函数和工具箱用于生成FMCW信号。可以根据需要选取适当的参数,如中心频率、频率扫描范围、载频信号周期等。生成的FMCW信号可以用于后续的测速过程。 接下来是信号处理,MATLAB提供了很多信号处理函数和工具箱用于对FMCW信号进行分析和处理。在FMCW测速中,一般采用动态调整的频率扫描信号与接收到的回信号进行混频操作,得到中频信号。然后通过对中频信号进行频谱分析,可以提取出目标物体的相对速度信息。 在MATLAB中,可以使用FFT(快速傅里叶变换)算法对中频信号进行频谱分析,获取目标物体的相对速度信息。同时,也可以在MATLAB中绘制形图、频谱图等,帮助理解和分析测速结果。 总结来说,MATLAB作为一种强大的科学计算软件,提供了丰富的函数和工具箱,可以方便地实现和仿真FMCW测速算法。通过合理选取参数和使用适当的函数,可以生成FMCW信号并进行信号处理,得到目标物体的速度信息。同时,MATLAB还提供了数据可视化的功能,帮助用户更直观地理解和分析测速结果。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值