厂商情况基于2018.06的了解,仅供参考。
本文主要基于https://blog.csdn.net/xiaohu50/article/details/78723539,在其基础上增加了自己查找的资料
1. CAN协议简介
简介:汽车CAN协议hacking
更加详细的可以参考kvasler的官网https://www.kvaser.com/about-can/
CAN接口分析硬件厂商
- kvasler
- 广州致远电子zlg
2. 摄像头
章节作者:百度工程师陈光,原文地址:https://zhuanlan.zhihu.com/p/33067923
为了能让无人车能像人一样,遇到障碍物或红灯就减速,直到停止;遇到绿灯或前方无障碍物的情况,进行加速等操作。这就需要车载传感器去周围的环境进行感知。
2.1 摄像机的分类
摄像机根据镜头和布置方式的不同主要有以下四种:单目摄像机、双目摄像机、三目摄像机和环视摄像机。
2.1.1 单目摄像机
单目摄像机模组只包含一个摄像机和一个镜头。
由于很多图像算法的研究都是基于单目摄像机开发的,因此相对于其他类别的摄像机,单目摄像机的算法成熟度更高。
但是单目有着两个先天的缺陷。
一是它的视野完全取决于镜头。焦距短的镜头,视野广,但缺失远处的信息。反之亦然。因此单目摄像机一般选用适中焦距的镜头。
二是单目测距的精度较低。摄像机的成像图是透视图,即越远的物体成像越小。近处的物体,需要用几百甚至上千个像素点描述;而处于远处的同一物体,可能只需要几个像素点即可描述出来。这种特性会导致,越远的地方,一个像素点代表的距离越大,因此对单目来说物体越远,测距的精度越低。
2.1.2 双目摄像机
由于单目测距存在缺陷,双目摄像机应运而生。相近的两个摄像机拍摄物体时,会得到同一物体在摄像机的成像平面的像素偏移量。有了像素偏移量、相机焦距和两个摄像机的实际距离这些信息,根据数学换算即可得到物体的距离。原理图下图。
根据双目测距原理应用在图像上每一个像素点时,即可得到图像的深度信息,如下图。
深度信息的加入,不仅能便于障碍物的分类,更能提高高精度地图定位匹配的精度。
虽然双目能得到较高精度的测距结果和提供图像分割的能力,但是它与单目一样,镜头的视野完全依赖于镜头。而且双目测距原理对两个镜头的安装位置和距离要求较多,这就会给相机的标定带来麻烦。
2.1.3 三目摄像机
由于单目和双目都存在某些缺陷,因此广泛应用于无人驾驶的摄像机方案为三目摄像机。三目摄像机其实就是三个不同焦距单目摄像机的组合。下图为特斯拉 AutoPilot 2.0安装在挡风玻璃下方的三目摄像机。
根据焦距不同,每个摄像机所感知的范围也不尽相同。
如下图,可以看出三个摄像头的感知范围由远及近,分别为前视窄视野摄像头(最远感知250米)、前视主视野摄像头(最远感知150米)及前视宽视野摄像头(最远感知60米)。
对摄像机来说,感知的范围要么损失视野,要么损失距离。三目摄像机能较好地弥补感知范围的问题。因此在业界被广泛应用。
那么测距精度的问题怎么办?
正是由于三目摄像机每个相机的视野不同,因此近处的测距交给宽视野摄像头,中距离的测距交给主视野摄像头,更远的测距交给窄视野摄像头。这样一来每个摄像机都能发挥其最大优势。
三目的缺点是需要同时标定三个摄像机,因而工作量更大。其次软件部分需要关联三个摄像机的数据,对算法要求也很高。
2.1.4 环视摄像机
之前提到的三款摄像机它们所用的镜头都是非鱼眼的,环视摄像机的镜头是鱼眼镜头,而且安装位置是朝向地面的。某些高配车型上会有“360°全景显示”功能,所用到的就是环视摄像机。
安装于车辆前方、车辆左右后视镜下和车辆后方的四个鱼眼镜头采集图像,采集到的图像与下图类似。鱼眼摄像机为了获取足够大的视野,代价是图像的畸变严重。
通过标定值,进行图像的投影变换,可将图像还原成俯视图的样子。之后对四个方向的图像进行拼接,再在四幅图像的中间放上一张车的俯视图,即可实现从车顶往下看的效果。如下图。
环视摄像机的感知范围并不大,主要用于车身5~10米内的障碍物检测、自主泊车时的库位线识别等。
2.2 摄像机的功能
摄像机在无人车上的应用,主要有两大类功能。主要是感知能力,其次是定位能力。
2.2.1 感知能力
在无人驾驶领域,摄像机的主要功能是实现各种环境信息的感知。接下来我会以Mobileye为例介绍摄像机能够实现的功能。Mobileye是国际上公认的做视觉最牛的公司之一。
可以看出摄像机可以提供的感知能力有:
①车道线(lane)
图中的深绿色线。车道线是摄像机能够感知的最基本的信息,拥有车道线检测功能即可实现高速公路的车道保持功能。
②障碍物(Obst