Carla自动驾驶仿真八:两种查找CARLA地图坐标点的方法


前言

CARLA没有直接的方法给使用者查找地图坐标点来生成车辆,这里推荐两种实用的方法在特定的地方生成车辆。


一、通过Spectator获取坐标

1、Spectator(观察者),我们通过键盘的W A S D按键以及鼠标的左键可以移动Carla Client的画面,实际移动的是Spectator的位置。

2、假设我们将Spectator通过W A S D按键以及鼠标移动到当前的位置,按键调整的是(x,y,z)位置,鼠标调整的是(pitch,yaw,roll)

在这里插入图片描述
3、执行下述代码,通过API获取当前Spectator位置,再将车辆生成到当前位置。

import carla

client = carla.Client('localhost', 2000)
carla_world = client.get_world()

#获取CARLA世界中的spectator
spectator = carla_world.get_spectator()
transform = spectator.get_transform()
print(transform)
#打印:Transform(Location(x=115.515007, y=-16.447723, z=1.146989), Rotation(pitch=10.587230, yaw=-3.618074, roll=0.000049))

#生成车辆
blueprint = carla_world.get_blueprint_library().filter('vehicle.*')[0]
ego = carla_world.spawn_actor(blueprint, transform)

在这里插入图片描述


二、通过道路ID获取坐标

1、假设你有roadrunner,打开carla的xodr地图,选中任意车道,你会发现右侧有road id = 17和lane id = -5,有了这两个参数就好办了。xodr地图路径在 D:\CARLA_0.9.14\WindowsNoEditor\CarlaUE4\Content\Carla\Maps\OpenDrive)

在这里插入图片描述
2、通过代码直接生成到目的道路和车道。

import carla

client = carla.Client('localhost', 2000)
carla_world = client.get_world()

target_road_id = 17
target_lane_id = -5

#获取carla地图
map = carla_world.get_map()
# 每隔2m生成1个waypoint
waypoints = map.generate_waypoints(2.0)
# 遍历路点
ego = None
for waypoint in waypoints:
    if waypoint.road_id == target_road_id:
        lane_id = waypoint.lane_id
        # 检查是否已经找到了特定车道ID的路点
        if lane_id == target_lane_id:
            location = waypoint.transform.location
            #稍微设置一下z坐标,如果z为0的话,车会掉下去。
            location.z = 1
            ego_spawn_point = carla.Transform(location, waypoint.transform.rotation)
            print(ego_spawn_point)
            #生成车辆
            blueprint = carla_world.get_blueprint_library().filter('vehicle.*')[0]
            ego = carla_world.spawn_actor(blueprint, ego_spawn_point)
            break
            
#这里补充观察者代码

3、上面的代码已经生成了车辆到指定的road id 和 lane id的位置,我们现在可以设置一个spectator看看车辆有没有在目的地,这部分代码和上面的代码一起执行

# 顺便搞个观察者安装到车辆,看看车到了目标点没有
camera_bp = carla_world.get_blueprint_library().find('sensor.camera.rgb')
# 设置生成Camera的附加类型为Rigid
Atment_SpringArmGhost = carla.libcarla.AttachmentType.Rigid
# 设置Camera的安装坐标系
Camera_transform = carla.Transform(carla.Location(x=-5, y=0, z=2),
                                   carla.Rotation(pitch=-10, yaw=0, roll=0))
# 生成Camera
camera = carla_world.spawn_actor(camera_bp, Camera_transform, attach_to=ego,
                                 attachment_type=Atment_SpringArmGhost)
#设置spectator坐标
carla_world.get_spectator().set_transform(camera.get_transform())

在这里插入图片描述

在这里插入图片描述


总结

roadrunner网上比较多资源,也比较容易安装,可以绘制日常仿真使用的地图,有时间的可以安装学习一下。

### 导入Carla模拟器地图至Blender 为了将CARLA模拟器中的地图导入到Blender中进行编辑或可视化,通常需要经过几个特定阶段的数据处理和转换。由于CARLA主要用于自动驾驶研究并提供了丰富的API接口用于环境交互[^3],而Blender则是一个强大的开源3D建模平台支持多种文件格式的输入输出[^2]。 #### 数据提取与准备 首先,在CARLA环境中运行所需的地图,并利用CARLA提供的Python API收集必要的地理信息数据和其他资产。这可能涉及到道路网络、建筑物模型以及其他静态或动态障碍物的位置和属性。这些数据往往是以OpenDRIVE(.xodr)或其他自定义二进制形式存储;对于更复杂的场景元素,则可能是以FBX或者其他通用三维模型格式存在。 #### 转换过程 一旦获得了原始数据,下一步就是将其转化为适合于Blender读取的形式: - **OpenDRIVE (.xodr)**:如果地图描述采用的是OpenDRIVE标准,那么可以寻找专门为此设计的插件或者脚本来完成.xodr到.blend文件的转换工作。 - **其他3D模型**:对于那些已经存在于CARLA内的3D对象(比如建筑),可以直接尝试导出为常见的交换格式如.FBX,.OBJ等,再加载到Blender里进一步加工。 ```python import bpy from pathlib import Path def load_fbx(file_path): """Load an FBX file into the current scene.""" bpy.ops.import_scene.fbx(filepath=str(Path(file_path))) # Example usage with a hypothetical path to your exported CARLA assets. load_fbx("/path/to/exported/carla_assets/buildings.fbx") ``` #### 后期调整 成功导入之后,就可以充分利用Blender的强大功能来进行材质贴图应用、光照设置乃至动画制作等一系列后期优化操作了。值得注意的是,考虑到两个软件之间的差异性,某些特性或许无法完全保留下来,因此有时还需要手动微调才能达到理想效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

自动驾驶simulation

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值