统计深度学习模型的参数和显存占用(pytorch)

这里介绍两种方法

1、使用相关的库torchsummary

from torchsummary import summary

net=net.to(torch.device("cpu"))#or cuda
summary(net,(4,228,912),device="cpu") #or cuda

统计结果比较详细,参数量、浮点数计算量、中间变量、train的变量数、保持不变的变量数,每一层的中间变量和类型都会详细列出

 

2、使用库thop

from thop import profile
net=net.cuda()
input= torch.ones([1,4,128,128]).cuda()
inputs=[]
inputs.append(input)
flops, params=profile(net,inputs)#,custom_ops={model.ResNet,countModel})
print("flops:{0:,} ".format(flops))
print("parms:{0:,}".format(params))

这个比较简单,最后简单的输出参数量和其中的浮点计算次数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值