基于深度学习的点云配准Benchmark

文章和代码已更新:

1. 概要

最近几年,基于深度学习的点云配准算法不断被提出,包括PointNetLK[1],Deep ICP[2],DCP[3],PRNet[4],IDAM[5],RPM-Net[6],3DRegNet[7],DGR[8]等。这些网络在ModelNet40,Kitti,或3DMatch数据集上进行试验,其性能与速度均超过了传统的ICP算法。这些算法或者网络结构较为复杂,或者结果难以复现,对于把深度学习应用到点云配准的初学者而言,不是很友好。这里结合自己的感触和最近阅读的PCRNet[9] (两者不谋而合),介绍一种非常简单的点云配准网络,或许它的结果不如前面提到的DCP, 3DRegNet等效果好,但其简洁易懂,且效果在ModelNet40上仍优于ICP,速度快于ICP。

本文将要介绍的网络是基于PointNet + Concat + FC的,它没有其它复杂的结构,易于复现。因其简洁性,这里暂且把其称作点云配准的Benchmark。因作者源码中复杂的(四元数, 旋转矩阵, 欧拉角之间)的变换操作和冗余性,且其PyTorch版本的不完整性(缺少评估模型等,最近又更新了),于是根据自己的理解,从头撸了一遍整个模型: 数据,网络,评估,训练,测试,可视化等操作,代码已开源https://github.com/zhulf0804/PCReg.PyTorch

章节2介绍模型的Dataloader部分,就是怎么组织数据的; 章节3介绍模型的网络部分; 章节4介绍损失函数; 章节5介绍评估指标; 章节6介绍模型的实现及实现过程中遇到的一些坑; 章节7介绍本库的一些实验结果; 章节8介绍一些补充信息,如四元数、旋转矩阵和欧拉角之间的关系等。

2. 数据

实验的数据为不带有normal信息的ModelNet40,下载地址为modelnet40_ply_hdf5_2048.zip。训练集中包括9840个样本,测试集中包括2468个样本,每个样本均包括2048个数据点。

  • 训练

    对训练集中的每个样本template,随机选择1024个点,并随机产生一个旋转矩阵R和平移向量t,其中R是绕z轴旋转 θ 1 ∈ [ − π 4 , π 4 ] \theta_1 \in [-\frac{\pi}{4}, \frac{\pi}{4}] θ1[4π,4π],绕y轴旋转 θ 2 ∈ [ − π 4 , π 4 ] \theta_2 \in [-\frac{\pi}{4}, \frac{\pi}{4}] θ2[4π,4π],绕z轴旋转 θ 3 ∈ [ − π 4 , π 4 ] \theta_3 \in [-\frac{\pi}{4}, \frac{\pi}{4}] θ3[4π,4π]随机生成,t是从[-1, 1]均匀采样生成。把R, t作用于template点云,生成source点云,这样就得到待配准的点云对。

    在训练时,需要做噪声数据增强,对source点云和template点云中的每个点(x, y, z)加上随机高斯噪声。

  • 测试

    对测试集中的每个样本template,选择全部的2048个点,同时产生一个旋转矩阵R和平移向量t(产生方式同训练),把R, t作用于template点云,生成source点云,这样就得到了待配准的点云对。

    为了公平的对比不同的方法,需要设置随机种子,保证每次测试随机产生的R,t都一样。

  • 相关代码在 ./data/ModelNet40.py.

3. 网络

  • Benchmark

    在这里插入图片描述

    Benchmark网络架构如上图所示,它的输入包括source点云和template点云,输出是一个7维向量,表示平移向量 t ∈ R 3 t \in \mathbb R^3 tR3和单位四元数 q ∈ R 4 q \in \mathbb R^4 qR4(q是单位向量)。

    Benchmark把点云配准当做回归问题,它包括提取特征层和回归层。提取特征层是一个PointNet类的网络,对点云 P S P_S PS P T P_T PT中的每一个点进行1D卷积Conv1d(3, 64, 64, 128, 1024),这样对每个点生成了1024维的特征,接下来进行MaxPooling操作,source点云 P S P_S PS和template点云 P T P_T PT分别得到了1024维的特征 ϕ ( P S ) \phi(P_S) ϕ(PS) ϕ ( P T ) \phi(P_T) ϕ(PT) P S P_S PS P T P_T PT经过的特征提取层是参数共享的。

    为了预测source点云和template点云之间的变换,需要在两者之间建立联系,这里采用了Concat操作。两个点云的特征通过Concat操作变成了2048维的特征。接下来的回归层就是全连接层FC(2048, 1024, 1024, 512, 512, 256, 7)。

    网络的输出就是平移向量和四元数,四元数进一步可以转化成旋转矩阵(变换公式参考章节8中的补充信息)。

  • Iterative Benchmark

    Benchmark网络结构比较简单,相信很多人可以设计出这样的网络,但经过试验发现,这样的网络效果较差,在ModelNet40上仍旧不能很好的配准。因此在Benchmark的基础上,提出了下面的Iterative Benchmark。

    在这里插入图片描述

    Iterative Benchmark包括n个Benchmark(PCRNet),要注意的是这n个Benchmark的权重是共享的,因此网络的容量是没有增加的,和Benchmark的参数一样。Iterative Benchmark是如何工作的呢?

    在第一次迭代中,source点云和template点云被送入到Benchmark(PCRNet),得到初始的变换T(1)。在下一次迭代中,T(1)作用于source点云得到transformed点云,和原始的template点云一块送入到Benchmark(PCRNet)。经过n次迭代,原始的source点云和template点云之间的变换为每一次迭代变换的组合:

    T = T ( n ) × T ( n − 1 ) . . . × T ( 1 ) T = T(n) \times T(n-1) ... \times T(1) T=T(n)×T(n1)...×T(1)

  • 相关代码在 ./models/benchmark.py

4. 损失函数

应用于点云配准中的Loss比较多,关于R, t的MSE Loss,关于欧拉角的Loss,关于点云的CD(Chamfer Distance) Loss和EMD(Earth Mover) Loss。

本模型中采用的EMD Loss(最先实验了CD Loss,效果不理想),实现的代码是借鉴于网上的开源库https://github.com/meder411/PyTorch-EMDLoss

  • EMD(Earth Mover Distance) Loss

    E M D ( P S est , P T ) = min ⁡ ψ : P S est − > P T 1 ∣ P S est ∣ Σ x ∈ P S est ∣ ∣ x − ψ ( x ) ∣ ∣ 2 EMD(P_S^{\text{est}}, P_T) = \min_{\psi: P_S^{\text{est}} -> P_T} \frac{1}{|P_S^{\text{est}}|}\Sigma_{x \in P_S^{\text{est}}}||x - \psi(x)||_2 EMD(PSest,PT)=ψ:PSest>PTminPSest1ΣxPSestxψ(x)2

  • CD(Chamfer Distance) Loss

    C D ( P S est , P T ) = Σ x ∈ P S est min ⁡ y ∈ P T ∣ ∣ x − y ∣ ∣ 2 + Σ y ∈ P T min ⁡ x ∈ P S est ∣ ∣ x − y ∣ ∣ 2 CD(P_S^{\text{est}}, P_T) = \Sigma_{x \in P_S^{\text{est}}} \min_{y \in P_T}||x - y||_2 + \Sigma_{y \in P_T } \min_{x \in P_S^{\text{est}}}||x-y||_2 CD(PSest,PT)=ΣxPSestyPTminxy2+ΣyPTxPSestminxy2

本库的loss代码在 ./loss/earth_mover_distance.py.

5. 评估指标

评估指标主要4个: mse_R, mse_t, mse_degree, time。前面3个和精度有关系,time是和效率有关。

  • mse_R

    mse _ R = Σ i = 1 N ∣ ∣ R pred i − R gt i ∣ ∣ 2 \text{mse}\_R = \Sigma_{i=1}^N||R_{\text{pred}}^i - R_{\text{gt}}^i||_2 mse_R=Σi=1NRprediRgti2

    N表示待配准点云对的数量。

  • mse_t

    mse _ t = Σ i = 1 N ∣ ∣ t pred i − t gt i ∣ ∣ 2 \text{mse}\_t = \Sigma_{i=1}^N||t_{\text{pred}}^i - t_{\text{gt}}^i||_2 mse_t=Σi=1Ntpreditgti2

  • mse_degree

    mse _ degree = Σ i = 1 N ∣ ∣ θ pred i − θ gt i ∣ ∣ 2 \text{mse}\_\text{degree} = \Sigma_{i=1}^N||\theta_{\text{pred}}^i - \theta_{\text{gt}}^i||_2 mse_degree=Σi=1Nθprediθgti2

    θ \theta θ表示欧拉角。

  • time

    每个点云对配准的平均时间。

  • 相关代码在 ./metrics/metrics.py

6. 实现

网络结构虽然简单,但使其能有效work还是很困难的,先说一下在实现过程中走过的坑:

  • 网络结构: 加bn层会使网络的结果变差。
  • 迭代: 基于Benchmark训练的网络效果远不如Iterative Benchmark的结果。
  • 损失函数: CD Loss训练的结果不如EMD Loss。
  • 优化器很: EMD Loss在SGD优化器下出现nan,一种有效的策略是采用Adam优化器训练EMD Loss。
  • 初始学习率: 初始学习率设置为1e-2,出现梯度爆炸,最终收敛的值较大; 初始学习率设置为1e-5,收敛时的权重在评估指标上仍然不好。
  • 在训练和预测时,减点云的均值是不合理的(原作者的代码是这么实现的),因为会使得点云的平移尺度接近于0.

因此,最终在实现时,采用了Iterative Benchmark模型、EMD Loss、Adam优化器。batchsize设置为16,训练400 epoches,初始学习率设置为1e-4,学习率下降采用MultiStepLR[50, 250]。在训练和预测时均不减点云的均值。

另外,要注意的是,一个batchsize中不同的组织数据会带来网络训练的不稳定性,比如相同的代码,不改任何配置,由于shuffle的存在,训练结果差别挺大的;因此在训练时设置了随机种子,保证训练结果的可复现性。

7. 实验结果

7.1 实验结果

实验比较了Iterative Benchmark和ICP在ModelNet40测试集上的精度和时间,实验结果如下表:

Methodmse_tmse_Rmse_degreetime(s)
icp0.400.3811.860.06
Iterative Benchmark0.350.187.900.02

从表中可以看到,Iterative Benchmark在ModelNet40测试集上的配准结果,从精度(mse_t, mse_R, mse_degree)和速度(time)上是优于ICP的。

7.2 实验结果可视化
  • ICP与Iterative Benchmark的对比

    在这里插入图片描述

    在这里插入图片描述

    左图是ICP的配准结果,右图是Iterative Benchmark的配准结果。图中的绿色点云表示source点云,红色点云表示template点云,另外一个颜色的点云表示transformed source点云,即把source点云与template点云配准得到R,t,然后R,t作用于source点云后的结果。括号内表示是平移t的误差,旋转矩阵R的MSE误差和旋转角度degree的误差。

    从可视化结果可以看到,当待配准点云的初始位置不好时,Iterative Benchmark的配准结果优于ICP的配准结果。

  • Iterative Benchmark的bad cases

    在这里插入图片描述

    上图是一个bad case,当具有重复性结构时,Iterative Benchmark的结果是不理想的,其结果弱于ICP算法。

7.3 训练过程可视化
  • 测试集的loss和训练集的loss

    在这里插入图片描述

  • 学习率

    在这里插入图片描述

  • 测试集的mse_R误差和训练集的mse_R误差

    在这里插入图片描述

  • 测试集的mse_t误差和训练集的mse_t误差

    在这里插入图片描述

  • 测试集的角度误差和训练集的角度误差

    在这里插入图片描述

7.4 思考

Iterative Benchmark在ModelNet40数据集的大部分cases的配准结果比较好的,但以下问题还需要解决:

  • 重复性结构或者复杂结构点云的配准
  • 真实数据点云的配准
  • 部分-部分点云的配准

8. 补充

本章节介绍一些三维旋转的内容,参考了https://en.wikipedia.org/wiki/Rotation_matrix#Axis_of_a_rotationhttps://zhuanlan.zhihu.com/p/45404840

  • 四元数转旋转矩阵

    设单位四元数 q = w + x i + y j + z k \mathbf{q} = w + x\mathbf i + y \mathbf j + z \mathbf k q=w+xi+yj+zk,其旋转矩阵为:

    R ( q ) = [ 1 − 2 y 2 − 2 z 2 2 x y − 2 z w 2 x z + 2 y w 2 x y + 2 z w 1 − 2 x 2 − 2 z 2 2 y z − 2 x w 2 x z − 2 y w 2 y z + 2 x w 1 − 2 x 2 − 2 y 2 ] R(q) = \left[ \begin{matrix} 1 - 2y^2 - 2z^2 & 2xy - 2zw & 2xz + 2yw \\ 2xy + 2zw & 1 - 2x^2 - 2z^2 & 2yz - 2xw \\ 2xz - 2yw & 2yz + 2xw & 1 - 2x^2 - 2y^2 \end{matrix} \right] R(q)=12y22z22xy+2zw2xz2yw2xy2zw12x22z22yz+2xw2xz+2yw2yz2xw12x22y2

  • 旋转矩阵转四元数

    w = t r ( R ) + 1 2 w = \frac{\sqrt{tr(R) + 1}}{2} w=2tr(R)+1

    x = R 32 − R 23 4 w x = \frac{R_{32} - R_{23}}{4w} x=4wR32R23

    y = R 13 − R 31 4 w y = \frac{R_{13} - R_{31}}{4w} y=4wR13R31

    z = R 21 − R 12 4 w z = \frac{R_{21} - R_{12}}{4w} z=4wR21R12

  • 旋转矩阵转欧拉角

    ∣ θ ∣ = arccos ⁡ ( T r ( R ) − 1 2 ) |\theta| = \arccos(\frac{Tr(R) - 1}{2}) θ=arccos(2Tr(R)1)

    T r ( R ) Tr(R) Tr(R)表示矩阵的迹

  • 绕x轴旋转矩阵

    R x ( θ ) = [ 1 0 0 0 cos ⁡ θ − sin ⁡ θ 0 sin ⁡ θ cos ⁡ θ ] R_x(\theta) = \left[ \begin{matrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{matrix} \right] Rx(θ)=1000cosθsinθ0sinθcosθ

  • 绕y轴旋转矩阵

    R y ( θ ) = [ cos ⁡ θ 0 sin ⁡ θ 0 1 0 − sin ⁡ θ 0 cos ⁡ θ ] R_y(\theta) = \left[ \begin{matrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos\theta \end{matrix} \right] Ry(θ)=cosθ0sinθ010sinθ0cosθ

  • 绕z轴旋转矩阵

    R z ( θ ) = [ cos ⁡ θ − sin ⁡ θ 0 sin ⁡ θ cos ⁡ θ 0 0 0 1 ] R_{z}(\theta) = \left[ \begin{matrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{matrix} \right] Rz(θ)=cosθsinθ0sinθcosθ0001

  • 相关代码在./utils/process.py

参考资料

[1]. PointNetLK: Point Cloud Registration using PointNet [CVPR 2019]

[2]. DeepICP: An End-to-End Deep Neural Network for 3D Point Cloud Registration [ICCV 2019]

[3]. Deep Closest Point: Learning Representations for Point Cloud Registration [ICCV 2019]

[4]. PRNet: Self-Supervised Learning for Partial-to-Partial Registration [NeurIPS 2019]

[5]. Iterative Distance-Aware Similarity Matrix Convolution with Mutual-Supervised Point Elimination for Efficient Point Cloud Registration [ECCV 2020]

[6]. RPM-Net: Robust Point Matching using Learned Features [CVPR 2020]

[7]. 3DRegNet: A Deep Neural Network for 3D Point Registration [CVPR 2020]

[8]. Deep Global Registration [CVPR 2020]

[9]. PCRNet: Point Cloud Registration Network using PointNet Encoding [arXiv 2019]

  • 6
    点赞
  • 49
    收藏
    觉得还不错? 一键收藏
  • 6
    评论
SuperMap是一种地理信息系统(GIS)软件,可以用于数据处理和分析。在SuperMap中进行数据配准的步骤如下: 1. 新建配准:在【开始】-【数据处理】-【配准】-【新建配准】中选择要配准的数据集和参考数据。如果没有参考数据,可以直接完成新建配准操作。 2. 选择控制点:在配准图层和参考图层中选择相同空间位置的特征同名点作为控制点。也可以通过导入已有的控制点配准信息文件进行配准。 3. 计算误差:选择配准算法计算控制点的误差。SuperMap会计算控制点的X残差、Y残差、均方根误差以及均方根总误差,以验证控制点选择的精度。通常要求配准的精度小于0.5个像元。 4. 执行配准:当计算误差满足配准精度要求时,可以执行配准操作。还可以导出配准信息文件。 在SuperMap中进行数据配准可以用于坐标校正、影像镶嵌、矢量数据合并等操作,确保数据在同一坐标系下进行分析。 #### 引用[.reference_title] - *1* *2* [SuperMap地图系列:数据配准](https://blog.csdn.net/supermapsupport/article/details/103302041)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [Supermap的地图配准](https://blog.csdn.net/weixin_44546066/article/details/86662686)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值