梯度下降法,牛顿法,牛顿高斯法的原理比较

本文对比了梯度下降法、牛顿法和高斯牛顿法在求解可导函数最小值时的原理。梯度下降仅使用一阶导数,而牛顿法利用二阶导数信息,能更精确地找到极小值。高斯牛顿法则在一阶方法中结合最小二乘思想。三种方法在不同情况下各有优势,近似精度与计算复杂性存在权衡。
摘要由CSDN通过智能技术生成

梯度下降法和牛顿法可以用于任何可导函数的优化,都是把要优化的函数做泰勒展开后,找到能让目标函数最小的那个\Delta x,注意不会目标函数的自变量x。

梯度下降法值保留泰勒展开的一阶项(只有雅克比项),牛顿法保留到二阶项(有海森矩阵项)。

为了求使目标函数最小的\Delta x,我们对\Delta x求导,然后试图求得使倒数为0的那个\Delta x

  1. 对于一阶的梯度下降法,求导后是线性方程,所以没有极小值,所以只用求得的\Delta x的方向。
  2. 对于二阶的牛顿法,求导后是二阶方程,所以能够求得一个极小值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值