经典策略之Dual Trust策略

一、Dual Trust 策略介绍

市场无外乎出现震荡或是趋势行情,在出现后者时价格动向更容易判断。因此想要过滤掉震荡行情、提高交易胜率是投资者们的共识,而今天我们为大家介绍的Dual Trust策略其核心思想就是通过过滤掉震荡行情,抓住趋势从而获得收益。

Dual Thrust由Michael Chalek在20世纪80年代开发, 曾被《Future Thruth》杂志评为最赚钱的策略之一。Dual Thrust策略作为趋势跟踪系统,简单易用、适用度广、思路简单,配合不同的参数、止盈止损和仓位管理,可以为投资者带来长期稳定的收益,被投资者广泛应用于各大市场中。在Dual Thrust交易系统中,对于震荡区间的定义非常关键,是该策略的核心所在。

二、Dual Trust 策略实现步骤

那么说了这么多,Dual Thrust策略究竟是如何实现的呢?

当当当~答案就是通过以下的三个步骤。

步骤一

取HH、LC、HC、LL如下:

HH是N日High的最高价,LC是N日Close的最低价,HC是N日Close的最高价,LL是N日Low的最低价。

步骤二

通过以上数据计算震荡区间及上轨下轨。

震荡区间:

Range = Max(HH-LC,HC-LL)

上轨:Buyline=Open+K1*Range

下轨:Sellline=Open-K2*Range

步骤三

具体开仓、平仓规则如下:

当价格突破上轨时,开多仓;当价格突破下轨时,开空仓。

如当前时点有同方向仓位,无需操作,若有反向持仓,先平仓再开仓。

 三、策略实证

我们也别光说不练,打开天语CTA平台,使用软件内置的经典十大策略,我们来测一测它的表现情况。

使用标的:螺纹主力连续

使用周期:5MIN

测算区间:16年1月回测至18年年底

在使用策略源码的情况下,年化收益率20%,不过回撤比较大足足有40%。

特别是在16年1月至17年8月的连续上涨行情的中,净值增长177%高于螺纹指数的137%,有不错的超额收益。

再看一看18年整体行情:

净值走势基本与螺纹指数相当,面对行情的急速变化反应能力一般,在2、9、10三个月出现明显的净值回撤。值的夸奖的是在11月,也就是下跌的延续阶段,策略重新开始获益,并先于螺纹指数回升。

这么看,DT策略不愧被投资者誉为经典,在明显的趋势行情中已经能够获得超过指数本身的收益。小格学艺不精,下次让大特来对代码改进改进,岂不是美滋滋。

--------------------------------------- -------------

拓展阅读:

1.一个量化策略师的自白(好文强烈推荐)

2.市面上经典的量化交易策略都在这里了!(源码)

3.期货/股票数据大全查询(历史/实时/Tick/财务等)

4.干货| 量化金融经典理论、重要模型、发展简史大全

5.从量化到高频交易,不可不读的五本书

6.高频交易四大派系大揭秘

### 深度学习中的对偶(Dual)策略概念 在机器学习领域,尤其是深度学习中,“对偶”这一术语通常与优化方法有关,在特定上下文中指代一种转换原始问题的方式以便更高效求解的方法。对于感知机算法而言,存在所谓的对偶形式,该形式允许通过样本间的内积计算来间接调整权重向量,从而简化了模型训练过程并有助于找到全局最优解[^1]。 然而值得注意的是,“Dual策略”并非一个广泛接受的标准术语;相反,它可能特指某些场景下采用的一种特殊设计模式或是技术手段。例如,在强化学习里提到的PPO(Proximal Policy Optimization)系列算法虽然涉及到了多种改进措施,但并没有直接提及所谓“Dual策略”的说法[^2]。 当讨论到具体的深度学习应用场景时,“对偶”更多地体现在诸如支持向量机(SVMs)这样的传统机器学习模型之中。而在现代神经网络架构及其训练技巧方面,则较少见到以“双/对偶策略”命名的技术描述。不过这并不意味着不存在类似的机制——实际上很多先进的训练框架内部确实实现了类似于“正则化路径跟随法”或“对抗性训练”这样具有双向互动性质的功能特性。 为了更好地理解这个话题,可以考虑以下几个方面: - **理论基础**:探索如何利用拉格朗日乘子法或其他数学工具构建原问题对应的对偶问题; - **实践案例**:研究那些成功运用了某种形式上的“对偶思维”的实际项目,比如GAN(Generative Adversarial Networks),其本质上就是一对相互竞争又合作的设计理念的具体体现; - **最新进展**:关注当前学术界关于新型优化器的研究成果,这些新方法往往蕴含着创新性的思路和技术路线,或许能够启发我们发现更多潜在的应用可能性。 ```python # 这是一个简单的Python代码片段用于展示如何创建两个互相作用的对象作为模拟"对偶"关系的例子。 class EntityA: def __init__(self, name="Entity A"): self.name = name def interact_with(self, entity_b): print(f"{self.name} interacts with {entity_b.name}") class EntityB: def __init__(self, name="Entity B", partner=None): self.name = name self.partner = partner def set_partner(self, a_instance): self.partner = a_instance a = EntityA() b = EntityB(partner=a) b.interact_with(a) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值