异质图神经网络相关论文(2023年)

异质图神经网络,指图中节点的类型大于1或者边的类型大于1。近期做异质图神经网络的,我知道的有:1)meta-path,人为定义的有语义信息的路径,比如 电影—导演—电影 这样一个元路径,电影和导演是不同的节点类型,这个路径的语义信息就是这两部电影是由同一个导演做的, 基于元路径再去做图神经网络的节点更新等等。

2)第二种是对第一种的改进,是说人为定义,预先设置好的元路径可能捕捉不到一些语义信息,提出了一种可以学习的元路径。

3)对不同的边,使用不同的邻接矩阵,就是有多个A,分别做图卷积,再拼接之类的操作,比如用两个邻接矩阵分别表示有向边的出边和入边。

应用:比如淘宝的商品推荐,人浏览某个商品可以构建以下的异质图:用户输入查询,查询指向商品,同时用户点击商品。

参考如下论文:

  • Beyond Smoothing: Unsupervised Graph Representation Learning with Edge Heterophily Discriminating, AAAI, [Paper]
  • Restructuring Graph for Higher Homophily via Adaptive Spectral Clustering, AAAI, [Paper]
  • 2-hop Neighbor Class Similarity (2NCS): A graph structural metric indicative of graph neural network performance, AAAI-W, [Paper]
  • Ordered GNN: Ordering Message Passing to Deal with Heterophily and Over-smoothing, ICLR, [Paper]
  • Gradient Gating for Deep Multi-Rate Learning on Graphs, ICLR, [Paper]
  • ACMP: Allen-Cahn Message Passing with Attractive and Repulsive Forces for Graph Neural Networks, ICLR, [Paper]
  • A Critical Look at Evaluation of GNNs Under Heterophily: Are We Really Making Progress?, ICLR, [Paper]
  • GReTo: Remedying dynamic graph topology-task discordance via target homophily, ICLR, [Paper]
  • Projections of Model Spaces for Latent Graph Inference, ICLR-W, [Paper]
  • Addressing Heterophily in Graph Anomaly Detection: A Perspective of Graph Spectrum, WWW, [Paper]
  • Homophily-oriented Heterogeneous Graph Rewiring, WWW, [Paper]
  • Auto-HeG: Automated Graph Neural Network on Heterophilic Graphs, WWW, [Paper],
  • Label Information Enhanced Fraud Detection against Low Homophily in Graphs, WWW, [Paper]
  • SE-GSL: A General and Effective Graph Structure Learning Framework through Structural Entropy Optimization, WWW, [Paper]
  • GCNH: A Simple Method For Representation Learning On Heterophilous Graphs, IJCNN, [Paper]
  • Exploiting Neighbor Effect: Conv-Agnostic GNNs Framework for Graphs with Heterophily, TNNLS, [Paper]
  • Multi-View Graph Representation Learning Beyond Homophily, TKDD, [Paper], [Code]
  • Spatial Heterophily Aware Graph Neural Networks, KDD, [Paper]
  • Finding the Missing-half: Graph Complementary Learning for Homophily-prone and Heterophily-prone Graphs, ICML, [Paper]
  • Contrastive Learning Meets Homophily: Two Birds with One Stone, ICML, [Paper]
  • Beyond Homophily: Reconstructing Structure for Graph-agnostic Clustering, ICML, [Paper]
  • GOAT: A Global Transformer on Large-scale Graphs, ICML, [Paper]
  • Towards Deep Attention in Graph Neural Networks: Problems and Remedies, ICML, [Paper]
  • Half-Hop: A graph upsampling approach for slowing down message passing, ICML, [Paper]
  • [Survey Paper] Heterophily and Graph Neural Networks: Past, Present and Future, Data Engineering, [Paper]
  • Homophily-Enhanced Self-Supervision for Graph Structure Learning: Insights and Directions, TNNLS, [Paper]
  • SlenderGNN: Accurate, Robust, and Interpretable GNN, and the Reasons for its Success, ICLR OpenReview, [Paper]
  • Simple Spectral Graph Convolution from an Optimization Perspective, ICLR OpenReview, [Paper]
  • The Impact of Neighborhood Distribution in Graph Convolutional Networks, ICLR OpenReview, [Paper]
  • Wide Graph Neural Network, ICLR OpenReview, [Paper]
  • Are Graph Attention Networks Attentive Enough? Rethinking Graph Attention by Capturing Homophily and Heterophily, ICLR OpenReview, [Paper]
  • Node Classification Beyond Homophily: Towards a General Solution, ICLR OpenReview, [Paper]
  • From ChebNet to ChebGibbsNet, ICLR OpenReview, [Paper]
  • ProtoGNN: Prototype-Assisted Message Passing Framework for Non-Homophilous Graphs, ICLR OpenReview, [Paper]
  • Low-Rank Graph Neural Networks Inspired by the Weak-balance Theory in Social Networks, ICLR OpenReview, [Paper]
  • Can Single-Pass Contrastive Learning Work for Both Homophilic and Heterophilic Graph?, ICLR OpenReview, [Paper]
  • Graph Contrastive Learning Under Heterophily: Utilizing Graph Filters to Generate Graph Views, ICLR OpenReview, [Paper]
  • ReD-GCN: Revisit the Depth of Graph Convolutional Network, ICLR OpenReview, [Paper]
  • Graph Neural Networks as Gradient Flows: Understanding Graph Convolutions via Energy, ICLR OpenReview, [Paper]
  • Causally-guided Regularization of Graph Attention improves Generalizability, ICLR OpenReview, [Paper]
  • GReTo: Remedying dynamic graph topology-task discordance via target homophily, ICLR OpenReview, [Paper]
  • Statistical Mechanics of Generalization In Graph Convolution Networks, arXiv, [Paper]
  • Semi-Supervised Classification with Graph Convolutional Kernel Machines, arXiv, [Paper]
  • A Graph Neural Network with Negative Message Passing for Graph Coloring, arXiv, [Paper]
  • Neighborhood Homophily-Guided Graph Convolutional Network, arXiv, [Paper]
  • Is Signed Message Essential for Graph Neural Networks?, arXiv, [Paper]
  • Attending to Graph Transformers, arXiv, [Paper]
  • Heterophily-Aware Graph Attention Network, arXiv, [Paper]
  • Steering Graph Neural Networks with Pinning Control, arXiv, [Paper]
  • Contrastive Learning under Heterophily, arXiv, [Paper]
  • Graph Positional Encoding via Random Feature Propagation, arXiv, [Paper]
  • Truncated Affinity Maximization: One-class Homophily Modeling for Graph Anomaly Detection, arXiv, [Paper]
  • When Do Graph Neural Networks Help with Node Classification: Investigating the Homophily Principle on Node Distinguishability, arXiv, [Paper]
  • GPatcher: A Simple and Adaptive MLP Model for Alleviating Graph Heterophily, arXiv, [Paper]
  • PathMLP: Smooth Path Towards High-order Homophily, arXiv, [Paper]
  • Demystifying Structural Disparity in Graph Neural Networks: Can One Size Fit All?, arXiv, [Paper]
  • Edge Directionality Improves Learning on Heterophilic Graphs, arXiv, [Paper]

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值